The Effect of Motorcycle Wheels (Original Equipment Manufacturer) Reconditioning Process on Mechanical Properties and Microstructure
Abstract
Wheels are an essential component of a vehicle. Material damage or failure on casting wheel-type wheels is primarily because these wheels receive a reasonably hard impact load due to uneven road conditions or potholes. This condition makes the wheels unable to function normally, and components must be replaced. Given the relatively high cost of replacing wheels, several options are offered to vehicle owners (consumers) to have their wheels reconditioned. This study aims to analyze the effect of the reconditioning process on the mechanical properties and microstructure of the casting wheel material. The sample material is taken from the Original Equipment Manufacturer (OEM) wheel casting wheel in the Disk section for impact testing, Rim for hardness, and microstructure tests. The results are that the reconditioning process affects the mechanical properties and microstructure of the original equipment manufacturer (OEM) alloy wheel material. The decrease in hardness value was 68.86 HBW to 61.59 HBW from the conditions before and after reconditioning. The impact test results where the impact energy absorption is greater after reconditioning is 29.24 J, and the average impact value for wheel specimens after reconditioning is 0.2902 J/mm2. The impact energy value before reconditioning is 7.87 J, and the average impact value is 0.0973 J/mm2. The microstructure obtained is hypereutectic, and the reconditioning process has little effect on the dendritic structure.
References
H. Husaini, N. Ali, A. Sofian, and N. R. Muhammad, "Comparison of Hardness and Microstructure of Cast Wheel and Spoke Wheel Rims of Motorcycles Made of Aluminum Alloy Alloy," Key Engineering Materials, vol. 892, pp. 81-88, 2021, doi: 10.4028/www.scientific.net/KEM.892.81.
I. Andi Husni, R. B. Suryasa Majanasastra, and R. H. Rahmanto, "Analisis Kekuatan Velg Cast Wheel Sepeda Motor Dengan Perangkat Lunak Berbasis Metode Elemen Hingga," Jurnal Ilmiah Teknik Mesin Unisma "45" Bekasi, vol. 4, no. 2, 2016 2016, doi: https://doi.org/10.33558/jitm.v4i2.725.
G. Previati, F. Ballo, M. Gobbi, and G. Mastinu, "Radial impact test of aluminium wheels—Numerical simulation and experimental validation," International Journal of Impact Engineering, vol. 126, pp. 117-134, 2019/04/01/ 2019, doi: https://doi.org/10.1016/j.ijimpeng.2018.12.002.
S. Sumiyanto and A. Abdunnaser, "Analisis Kekuatan Velg Alumunium Model D30D Pada Perusahaan “A”," Bina Teknika, vol. 14, p. 225, 12/17 2018, doi: 10.54378/bt.v14i2.326.
R. Vijayakumar, C. Ramesh, R. Boobesh, R. Ram Surya, and P. Souder Rajesh, "Investigation on automobile wheel rim aluminium 6061 and 6066 Alloys using ANSYS WORKBENCH," Materials Today: Proceedings, vol. 33, pp. 3155-3159, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.matpr.2020.03.798.
Daryanto, Reparasi casis mobil Jakarta: Rineka Cipta, 2004, p. 177.
S. Das, "Design and weight optimization of aluminum alloy wheel," International Journal of Scientific Research, vol. 4, pp. 1-12, 07/06 2014, doi: https://doi.org/10.29322/ijspr.
G. A. Syahputra, B. Syam, Tugiman, F. Ariani, Mahadi, and I. Isranuri, "Analisa Pengaruh Kekerasan Dan Struktur Mikro Terhadap Kegagalan Velg Mobil Berbasis Aluminium Alloy," Jurnal Dinamis, vol. 4, no. 1, pp. 38-44, 2016, doi: https://doi.org/10.32734/dinamis.v4i1.7015.
S. Kirono and A. Purnomo, "Analisa Karakteristik Material Spoke Wheel dengan Cast Wheel Pada Pelek Sepeda Motor," SINTEK JURNAL, pp. 27-36, 2007.
F. Pris, B. Suyitno, and A. Suhadi, "AAnalisis Kekuatan Velg Aluminium Alloy 17 INC Dari Berbagai Desain Menggunakan Metode Finite Element Analysis (FEA)," Teknobiz : Jurnal Ilmiah Program Studi Magister Teknik Mesin, vol. 9, no. 2, pp. 33-39, 07/13 2019, doi: https://doi.org/10.35814/teknobiz.v9i2.558.
M. Z. R. M. Rizki, C. Anwar, and Y. Heryadi, "Analisis Kekuatan Velg Casting Wheel Sepeda Motor Berdasarkan Beban Penumpang dan Kondisi Jalanan Berlubang," Jurnal Teknologika, vol. 11, no. 2, pp. 44-56, 2021. [Online]. Available: https://jurnal.wastukancana.ac.id/index.php/teknologika/article/view/133/90.
B. Junipitoyo, L. Baihaqy, and L. Winiasri, "Pengaruh Heat Treatment Dan Quenching Terhadap Sifat Fisis Dan Mekanis Aluminum Alloy 2024-t3," Jurnal Penelitian, vol. 5, pp. 1-10, 04/27 2020, doi: https://doi.org/10.46491/jp.v5e1.481.1-10.
Standard Test Method for Brinell Hardness of Metallic Materials, ASTME10, West Conshohocken, PA, 2018. [Online]. Available: https://www.astm.org/e0010-18.html
Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTME23, West Conshohocken, PA, 2002. [Online]. Available: https://www.astm.org/e0023-02.html
S.-S. Ahn et al., "Enhancement of the Mechanical Properties in Al–Si–Cu–Fe–Mg Alloys with Various Processing Parameters," Materials, vol. 11, no. 11, doi: https://doi.org/10.3390/ma11112150.
A. N. Aliyah and A. Anawati, "Effect of Heat Treatment on Microstructure and mechanical hardness of aluminum alloy AA7075," IOP Conference Series: Materials Science and Engineering, vol. 541, no. 1, p. 012007, 2019/06/01 2019, doi: https://doi.org/10.1088/1757-899X/541/1/012007.
Copyright (c) 2024 Ahmad Kafrawi Nasution, Alfindo, Sunaryo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.