Observe The Response a Finite Element Linear Static Analysis Simulation Was Conducted On The Fire Extinguisher Refill Frame.
DOI:
https://doi.org/10.21070/r.e.m.v10i2.1792Keywords:
Finite Element; Static Liniear; Chasis; Safety FactorAbstract
The apar refill machine consists of several components so that the frame of the apparatus requires a strength analysis of the frame. The problem that arises to make a portable apparatus is that there are 2 main components that depend and 1 component that does not depend, so the purpose of this study is with the process of finite element linear static analysis, the results of the frame design can show the reactions that arise due to the existing load, whether the frame is safe to use or not. This research method begins with design, material input, mesh input, boundary condition input and force input. The results show that the reactions that occur are the highest stress of 18,882 N, disspacement 2,450E + 00 mm, strain of 8,182E-05 and safety factor 3,6383 + 12. From these results, according to the mechanical properties reference static linear threshold, the value is still safe at the maximum force threshold.
References
[1] T. T. T. Van, N. D. Tung, and N. Trung Kien, “Finite element analysis of plane frame systems with different models of semi-rigid connections,” IOP Conf. Ser. Mater. Sci. Eng., vol. 962, no. 2, 2020, doi: 10.1088/1757-899X/962/2/022060.
[2] M. L. Shreeshail, B. Santosh, R. C. Gireesha, G. U. Raju, G. K. Krishnaraja, and B. B. Kotturshettar, “Finite Element Analysis of Light Motor Vehicle Subframe for Mass Optimization,” AIP Conf. Proc., vol. 2446, no. May 2023, 2022, doi: 10.1063/5.0108555.
[3] D. Alvarado, E. Flores, and E. Paipa, “Design and validation by the finite element method of the structural arrangement of a riverine low draft combat boat,” Cienc. y Tecnol. buques, vol. 15, no. 29, pp. 21–35, 2021, doi: 10.25043/19098642.218.
[4] J. Töpler, L. Buchholz, J. Lukas, and U. Kuhlmann, “Guidelines for a Finite Element Based Design of Timber Structures and Their Exemplary Application on Modelling of Beech LVL,” Buildings, vol. 13, no. 2, 2023, doi: 10.3390/buildings13020393.
[5] M. Sakakibara, M. Ouchi, and H. Shirahata, “Analysis of bridges by finite element method and application of digital twin,” Life-Cycle Perform. Struct. Infrastruct. Syst. Divers. Environ., pp. 417–424, 2025, doi: 10.1201/9781003595120-50.
[6] D. Satrijo, O. Kurdi, and S. Wijaya, “Static Linear Stress Analysis of Road Bike Frame Design Using Finite Element Method,” Proc. Conf. Broad Expo. to Sci. Technol. 2021 (BEST 2021), vol. 210, no. Best 2021, pp. 430–433, 2022, doi: 10.2991/aer.k.220131.065.
[7] K. Zhu et al., Finite Element Software Analysis of Engineering Structure Test and Teaching Reform of Integration of Production and Teaching. Atlantis Press International BV, 2023. doi: 10.2991/978-94-6463-172-2_180.
[8] L. Antonio, F. De Souza, and L. L. Verdade, “NUMERICAL-COMPUTATIONAL MODEL FOR DYNAMIC NONLINEAR ANALYSIS OF FRAMES WITH SEMI-RIGID CONNECTION CONSIDERING THE DAMPING EFFECT 1 INTRODUCTION Due to recent advances in computational resources , new possibilities are opened for the dynamic analysis of so,” RGSA – Rev. Gestão Soc. e Ambient. ISSN, vol. 18, no. 1, pp. 1–19, 2024.
[9] A. Widyianto, Y. Budiman, R. Agistya, and N. Naila, “Results in Engineering Optimizing enhanced smart architecture frame ( eSAF ) topology : A computational approach to weight and strength trade-offs,” Results Eng., vol. 28, no. October, p. 107614, 2025, doi: 10.1016/j.rineng.2025.107614.
[10] Y. Li, Y. Deng, and A. Li, “A practical finite element simulation method for the Tuned Liquid Damper (TLD) in the entire structure,” J. Eng. Res., vol. 13, no. 3, pp. 2171–2178, 2025, doi: 10.1016/j.jer.2024.08.005.
[11] S. Mozaffari, M. Akbarzadeh, and T. Vogel, “Graphic statics in a continuum: Strut-and-tie models for reinforced concrete,” Comput. Struct., vol. 240, p. 106335, 2020, doi: 10.1016/j.compstruc.2020.106335.
[12] I. Bouckaert, M. Godio, and J. Pacheco de Almeida, “A Hybrid Discrete-Finite Element method for continuous and discontinuous beam-like members including nonlinear geometric and material effects,” Int. J. Solids Struct., vol. 294, no. April 2023, 2024, doi: 10.1016/j.ijsolstr.2024.112770.
[13] P. Azhir, J. Asgari Marnani, M. Panji, and M. S. Rohanimanesh, “A Coupled Finite-Boundary Element Method for Efficient Dynamic Structure-Soil-Structure Interaction Modeling,” Math. Comput. Appl., vol. 29, no. 2, 2024, doi: 10.3390/mca29020024.
[14] J. Szafran, K. Juszczyk-Andraszyk, and P. Kaszubska, “Effectiveness Analysis of the Non-Standard Reinforcement of Lattice Tower Legs Using the Component-Based Finite Element Method,” Materials (Basel)., vol. 18, no. 6, 2025, doi: 10.3390/ma18061242.
[15] K. Khutal, G. Kathiresan, K. Ashok, B. Simhachalam, and D. Davidson Jebaseelan, “Design Validation Methodology for Bicycle Frames Using Finite Element Analysis,” Mater. Today Proc., vol. 22, pp. 1861–1869, 2019, doi: 10.1016/j.matpr.2020.03.085.
[16] S. Szirbik and Z. Virág, “Finite Element Analysis of a Steel Bridge Frame for Belt Conveyors,” Geosci. Eng., vol. 11, no. 1, pp. 110–116, 2023, doi: 10.33030/geosciences.2023.01.009.
[17] N. Qosim, Z. F. Emzain, A. M. Mufarrih, R. Monasari, F. Kusumattaqiin, and R. E. Santoso, “Finite Element Analysis of Ss316L-Based Five-Hole Plate Implant for Fibula Reconstruction,” J. Appl. Eng. Technol. Sci., vol. 4, no. 1, pp. 16–23, 2022, doi: 10.37385/jaets.v4i1.533.
[18] R. A. Nanda, A. Arhami, and R. Kurniawan, “Perancangan Dan Pengujian Model Mobil Robot Penanam Bibit Kangkung,” Rona Tek. Pertan., vol. 13, no. 2, pp. 14–28, 2020, doi: 10.17969/rtp.v13i2.16982.
[19] R. A. Nanda, T. Supriyono, R. A. R. Ma’arof, and F. M. Dewadi, “Analisis Chassis Mobil Robot Penanaman Bibit Kangkung Menggunakan Metode Elemen Hingga,” J. Tek. Mesin Mech. Xplore, vol. 2, no. 2, pp. 1–8, 2022.
[20] U. Deep Kamal and R. Ranjan, “Finite Element Analysis of rigid plane frame and its application in Building Structures,” no. April, pp. 0–5, 2023, [Online]. Available: https://www.researchgate.net/publication/370134493
[21] M. Šmak, J. Kubíček, J. Kala, K. Podaný, and J. Vaněrek, “The influence of hot-dip galvanizing on the mechanical properties of high-strength steels,” Materials (Basel)., vol. 14, no. 18, pp. 1–19, 2021, doi: 10.3390/ma14185219.
[22] J. Tremblay et al., Shigley’s Mechanical Engineering Design, vol. 1, no. 1. 2016. [Online]. Available: http://www.biblioteca.pucminas.br/teses/Educacao_PereiraAS_1.pdf%0Ahttp://www.anpocs.org.br/portal/publicacoes/rbcs_00_11/rbcs11_01.htm%0Ahttp://repositorio.ipea.gov.br/bitstream/11058/7845/1/td_2306.pdf%0Ahttps://direitoufma2010.files.wordpress.com/2010/
Published
License
Copyright (c) 2025 Rizki Aulia Nanda, Karyadi, Dodi Mulyadi, Ade Suhara

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.



