Optimization of Polylactic acid and Banana Peel Flour Composition to Enhance the Mechanical Properties and Biodegradability of Eco-Friendly Bioplastics

Authors

  • Isa Yuanata Abdulloh Universitas Negeri Surabaya
  • Andita Nataria Fitri Ganda Universitas Negeri Surabaya
  • Dewi Puspitasari Universitas Negeri Surabaya
  • Arya Mahendra Sakti Universitas Negeri Surabaya

DOI:

https://doi.org/10.21070/r.e.m.v10i2.1789

Keywords:

Banana peel flour, Biodegradable materials, Bioplastic, Polylactic acid, Sustainable composites

Abstract

This study investigates the development of environmentally friendly bioplastics made from polylactic acid (PLA) reinforced with banana peel flour. Four filler concentrations (0%, 10%, 20%, and 30% wt) were fabricated using injection molding and evaluated through tensile testing (ASTM D638), FTIR spectroscopy, and soil burial biodegradation. Pure PLA showed the highest tensile strength (26.23 MPa) but had the lowest elongation (6.33%) and biodegradation rate (12.8%). Adding 10-20 wt% filler increased stiffness, with the elastic modulus rising from 21.24 MPa to 38.12-26.63 MPa, while maintaining moderate flexibility. The 30 wt% composite demonstrated the most balanced performance, achieving 67.24 MPa tensile strength, 40.12 MPa modulus, 11.49% elongation, and the highest mass loss (20.2%). FTIR results showed a C=O shift from 1743.44 to 1720.46 cm⁻¹ and broad O–H bands, confirming hydrogen bonding and improved interfacial adhesion. Overall, banana peel flour is a promising sustainable filler for PLA-based bioplastics.

References

[1] B. Sulaeman and L. H. Arman, “KARAKTERISTIK BIOPLASTIK PATI SAGU ( METROXYLON SP .) SETELAH PAPARAN CAHAYA ULTRAVIOLET,” vol. 16, no. 1, pp. 415–430, 2025, doi: 10.21776/jrm.v16i1.1965.

[2] M. López-González, A. Flores, F. Marra, G. Ellis, M. Gómez-Fatou, and H. J. Salavagione, “Graphene and polyethylene: A strong combination towards multifunctional nanocomposites,” Polymers (Basel)., vol. 12, no. 9, 2020, doi: 10.3390/POLYM12092094.

[3] P. J. Landrigan et al., “The Minderoo-Monaco Commission on Plastics and Human Health,” Ann. Glob. Heal., vol. 89, no. 1, 2023, doi: 10.5334/aogh.4056.

[4] M. D. Wibowo et al., “KEMAJUAN TERKINI DALAM PENGEMASAN BIODEGRADABLE : PENGGUNAAN KEMASAN BERBASIS POLY ( LACTIC-ACID ) – TINJAUAN SISTEMATIS,” no. 1, pp. 138–146, 2024.

[5] M. Hussain, S. M. Khan, M. Shafiq, and N. Abbas, “A review on PLA-based biodegradable materials for biomedical applications,” Giant, vol. 18, 2024, doi: 10.1016/j.giant.2024.100261.

[6] I. W. G. S. Wardiana, P. H. Setyarini, and T. D. Widodo, “Pengaruh Penambahan Hidroksiapatit Dan Kitosan Pada Pla Dan Abs Terhadap Sifat Mekanik Dari Komposit Biomaterial,” J. Rekayasa Mesin, vol. 13, no. 3, pp. 837–846, 2022, doi: 10.21776/jrm.v13i3.1224.

[7] Mare Plasticum - The Plastic Sea. 2020. doi: 10.1007/978-3-030-38945-1.

[8] A. R. Lubis, M. I. M. Lubis, M. Riza, and C. M. Rosnelly, “Pembuatan Plastik Biodegradable dari Limbah Kulit Pisang Raja Dengan Gliserol dan Minyak Sereh,” J. Inov. Ramah Lingkung., vol. 1, no. 3, pp. 1–5, 2020, [Online]. Available: https://jim.usk.ac.id/JIRL/article/view/19282

[9] E. Jumiati, M. Husnah, and S. A. Lestari, “Analisis sifat mekanik bioplastik berbahan dasar pati kulit pisang raja dengan variasi selulosa jerami padi,” J. Fis. Flux, vol. 20, no. 1, pp. 23–30, 2023.

[10] F. A. Putri, “Karakterisasi Bioplastik dari Pati Limbah Kulit Pisang Dengan Penambahan ZnO dan Gliserol,” Prism. Fis., vol. 10, no. 2, p. 105, 2022, doi: 10.26418/pf.v10i2.54694.

[11] M. Atiq Juani and N. Navaranjan, “Recent Advance in Biodegradable Packaging from Banana Plant Feedstock: A Comprehensive Review,” ASEAN J. Sci. Technol. Dev. , vol. 40, no. 2, pp. 71–88, 2023, doi: 10.61931/2224-9028.1528.

[12] U. K. Komal, M. K. Lila, and I. Singh, “PLA/banana fiber based sustainable biocomposites: A manufacturing perspective,” Compos. Part B Eng., vol. 180, 2020, doi: 10.1016/j.compositesb.2019.107535.

[13] E. Gorgun, A. Ali, and M. S. Islam, “Biocomposites of Poly(Lactic Acid) and Microcrystalline Cellulose: Influence of the Coupling Agent on Thermomechanical and Absorption Characteristics,” ACS Omega, vol. 9, no. 10, pp. 11523–11533, 2024, doi: 10.1021/acsomega.3c08448.

[14] J. Teknologi, “1,* , 2 , 3,” vol. 24, no. 2, pp. 114–120, 2024.

[15] N. N. Mies and A. Mulyati, “Pemanfaatan Limbah Kulit Singkong Sebagai Plastik Ramah Lingkungan Untuk Mengatasi Pencemaran Akibat Plastik Polimer,” 2025.

[16] A. Fitria, W. Nilandita, and A. Hakim, “Karakteristik Fisik dan Mekanik Bioplastik Berbahan Dasar Pati Limbah Kulit Pisang Raja Bulu (Musa paradisiaca L. var sapientum) dengan Variasi Jenis Plasticizer dan Kitosan,” Dampak, vol. 20, no. 1, pp. 26–32, 2023, doi: 10.25077/dampak.20.1.26-32.2023.

[17] A. Dwivedi et al., “Spectroscopic and molecular docking studies for the binding and interaction aspects of curcumin-cysteine conjugate and rosmarinic acid with human telomeric G-quadruplex DNA,” Int. J. Biol. Macromol., vol. 182, pp. 1463–1472, Jul. 2021, doi: 10.1016/J.IJBIOMAC.2021.05.089.

[18] N. A. Huzaisham and N. Marsi, “Utilization of banana (Musa paradisiaca) peel as bioplastic for planting bag application,” Int. J. Adv. Res. Eng. Technol., vol. 11, no. 4, 2020, doi: 10.34218/IJARET.11.4.2020.013.

[19] D. N. Serfandi, P. H. Setyarini, and S. Sulistyon, “Karakterisasi penambahan kitosan dan hap pada pla terhadap sifat mekanik komposit,” vol. 15, no. 3, pp. 1241–1251, 2024, doi: 10.21776/jrm.v15i3.1475.

[20] D. N. Serfandi, P. H. Setyarini, P. Purnami, and S. Sulistyono, “Karakterisasi Biodegradasi Pada Komposit Polymer Polylactid Acid (Pla) Dengan Penambahan Chitosan Dan Hydroxyapatite,” J. Rekayasa Mesin, vol. 14, no. 3, pp. 953–962, 2023, doi: 10.21776/jrm.v14i3.1476.

[21] R. Slezak, L. Krzystek, M. Puchalski, I. Krucińska, and A. Sitarski, “Degradation of bio-based film plastics in soil under natural conditions,” Sci. Total Environ., vol. 866, 2023, doi: 10.1016/j.scitotenv.2023.161401.

[22] J. A. Wicaksono, T. Purwadaria, A. Yulandi, and W. A. Tan, “Bacterial dynamics during the burial of starch-based bioplastic and oxo-low-density-polyethylene in compost soil,” BMC Microbiol., vol. 22, no. 1, 2022, doi: 10.1186/s12866-022-02729-1.

[23] V. Nayan, S. K. Onteru, and D. Singh, “Epitope-based in silico peptide design yields peptide-directed antibodies that recognize the buffalo luteinizing hormone,” Int. J. Biol. Macromol., vol. 176, pp. 260–271, Apr. 2021, doi: 10.1016/J.IJBIOMAC.2021.02.083.

[24] A. Zuhdi Rafid, H. Hosta Ardhyananta, and V. Mitha Pratiwi, “Tinjauan Pengaruh Penambahan Jenis Filler terhadap Sifat Mekanik dan Biodegrdasi pada Bioplastik Pati Singkong,” J. Tek. Its, vol. 10, no. 2, pp. 49–54, 2021.

[25] M. Turchanin, P. Agraval, L. Dreval, A. Vodopyanova, and V. Korsun, “Mixing enthalpy of the Co–Ti–Hf liquid alloys and regularities of the function change in the row of the ternary (Co, Ni, Cu)–Ti–Hf glass-forming melts,” Mater. Today Proc., vol. 62, no. P15, pp. 7681–7685, Jan. 2022, doi: 10.1016/J.MATPR.2022.03.130.

[26] D. Gregor-Svetec, M. Leskovšek, B. Leskovar, U. Stanković Elesini, and U. Vrabič-Brodnjak, “Analysis of pla composite filaments reinforced with lignin and polymerised-lignin-treated nfc,” Polymers (Basel)., vol. 13, no. 13, 2021, doi: 10.3390/polym13132174.

[27] W. Mu, X. Chen, S. Li, Y. Sun, Q. Wang, and J. Na, “Mechanical Performances Analysis and Prediction of Short Plant Fiber-Reinforced PLA Composites,” Polymers (Basel)., vol. 15, no. 15, 2023, doi: 10.3390/polym15153222.

[28] A. P.K., “Development and Characterization of Bioplastic Sheets from Different Varieties of Banana Peel,” African J. Biomed. Res., vol. 28, no. 1, pp. 1271–1277, 2025, doi: 10.53555/ajbr.v28i1s.6415.

[29] S. Momeni, K. Craplewe, M. Safder, S. Luz, D. Sauvageau, and A. Elias, “Accelerating the Biodegradation of Poly(lactic acid) through the Inclusion of Plant Fibers: A Review of Recent Advances,” ACS Sustain. Chem. Eng., vol. 11, no. 42, pp. 15146–15170, 2023, doi: 10.1021/acssuschemeng.3c04240.

[30] D. R. Cruz Fabian et al., “Renewable Poly(Lactic Acid)Lignocellulose Biocomposites for the Enhancement of the Water Retention Capacity of the Soil,” Polymers (Basel)., vol. 15, no. 10, 2023, doi: 10.3390/polym15102243.

Downloads

Published

2025-12-08