Windshield Damage Analysis on ATR 42/72-600 Aircraft at PT. DEF


  • (1) * Wilarso Wilarso            Universitas Muhammadyah Cileungsi, Indonesia  
            Indonesia

  • (2)  Indra Gumilar            Universitas Muhammadiyah Cileungsi, Indonesia  
            Indonesia

  • (3)  Hilman Sholih            Universitas Muhammadiyah Cileungsi, Indonesia  
            Indonesia

  • (4)  Asep Saepudin            Universitas Muhammadiyah Cileungsi, Indonesia  
            Indonesia

    (*) Corresponding Author

Abstract

Windshield damage on ATR 42/72-600 aircraft at PT. DEF has caused operational disruptions, including flight delays, increased maintenance costs, and potential safety risks. Repeated damage to the Windshield is caused by various factors, namely inspection and maintenance errors, improper installation procedures, damage to the heating system or pressure distribution, glass material degradation, and exposure to extreme weather and UV rays. In this study, the analysis was carried out using a quantitative method with a fishbone diagram to identify the main causes of damage and appropriate mitigation steps. The results of the analysis showed that the main factors contributing to the damage were errors in inspection, installation errors, and material degradation. After implementing mitigation steps such as improving technician training, revising maintenance procedures, and improving material selection, there was a significant decrease in the frequency of Windshield damage. An indication of the success of these mitigation steps can be seen from the repairs carried out during January to June 2024 which succeeded in reducing damage and rejects on the Windshield by 40% compared to 2023, improving the quality of maintenance, inspection and material durability. In terms of maintenance costs for spare parts, there is a decrease in spending on purchasing spare windshields, namely USD 15,375 (PPG Inc.) x 10 units = USD 153,750 in 2023 to USD 21,915 (Saint Gobain) x 3 units = USD 65,745 in 2024 (June), which is 42% until mid-2024. This step increases operational reliability, cost efficiency, flight safety, and employee productivity, customer satisfaction also increases along with reduced flight delays and cancellations due to technical problems. Overall, the study succeeded in reducing Windshield damage and increasing the company's operational efficiency and reliability

References

F. J. OMBUH, M. Arifin, and E. Yuniarti, “ANALISIS PERFORMA PESAWAT ATR 72-500 SEBAGAI PESAWAT CHARTER RUTE BANDARA HALIM PERDANAKUSUMA-MATAK DAN HALIM PERDANAKUSUMA- BADAK BONTANG,” J. Teknol. Kedirgant., vol. 8, no. 1, 2023, doi: 10.35894/jtk.v8i1.81. https://doi.org/10.35894/jtk.v8i1.81

A. Laksono, S. A. Sitompul, A. Suprianto, and R. Fitriansyah, “Analisis Numerik Pengaruh Gasket pada Windshield Pesawat Komuter 19 Penumpang Terhadap Fenomena Bird Strike,” J. Teknol. Kedirgant., vol. 7, no. 1, pp. 72–84, 2022, doi: 10.35894/jtk.v7i1.49. https://doi.org/10.35894/jtk.v7i1.49

P. Tambunan, B. A. Warsiyanto, E. Yuniarti, and R. Fitriansyah, “Analisis Respon Dinamik Windshield Pesawat Komuter 19 Penumpang Terhadap Fenomena Bird Strike Menggunakan Metode Coupled Eulerian-Lagrangian (CEL),” J. Mhs. Dirgant., vol. 2, no. 2, 2024, doi: 10.35894/jmd.v2i2.26. https://doi.org/10.35894/jmd.v2i2.26

R. Pratama and M. Basuki, “MITIGASI RISIKO K3 PADA PEKERJAAN PEMELIHARAAN DAN PERBAIKAN DI AREA KAMAR MESIN KAPAL GENERAL CARGO MENGGUNAKAN METODE FAILURE MODE AND EFFECT ANALYSIS,” J. Sumberd. Bumi Berkelanjutan, vol. 1, no. 1, 2022, doi: 10.31284/j.semitan.2022.3011. https://doi.org/10.31284/j.semitan.2022.3011

Asiva Noor Rachmayani, “Human Factors Guide for Aviation Maintenance and Inspection,” p. 269, 2015, [Online]. Available: https://www.faa.gov/sites/faa.gov/files/about/initiatives/maintenance_hf/training_tools/HF_Guide.pdf

M.-K. Choi, “Analisis Numerik Bird Strik Pada Radome Dengan Struktur Sandwich,” vol. 30, p. 321, 2018.

N. Ilminnafik, P. Dimas Endrawan, H. M Fahrur Rozy, K. Muh. Nurkoyim, and Y. Danang, “Karakteristik Semburan Bahan Bakar Aviation Gasoline dengan Nozzle Pesawat Cessna 172S,” J. Mech. Eng., vol. 1, no. 1, pp. 9–22, 2024, doi: 10.47134/jme.v1i1.2182. https://doi.org/10.47134/jme.v1i1.2182

B. Main, L. Molent, R. Singh, and S. Barter, “Fatigue crack growth lessons from thirty-five years of the Royal Australian Air Force F/A-18 A/B Hornet Aircraft Structural Integrity Program,” Int. J. Fatigue, vol. 133, 2020, doi: 10.1016/j.ijfatigue.2019.105426. https://doi.org/10.1016/j.ijfatigue.2019.105426

A. Venugopal, R. Mohammad, M. F. S. Koslan, A. Shafie, A. Bin Ali, and O. Eugene, “Crack growth prediction on critical component for structure life extension of royal malaysian air force (Rmaf) sukhoi su-30mkm,” Metals (Basel)., vol. 11, no. 9, 2021, doi: 10.3390/met11091453. https://doi.org/10.3390/met11091453

I. Bagaskoro, M. I. P. Hidayat, and H. Ardhyananta, “Simulasi Delaminasi Laminat Komposit Serat Karbon terhadap Variasi Arah Serat Menggunakan Teknik Cohesive Zone Model (CZM) dan Virtual Crack Closure (VCC) dengan Metode Elemen Hingga,” J. Tek. ITS, vol. 9, no. 2, 2021, doi: 10.12962/j23373539.v9i2.55512. https://doi.org/10.12962/j23373539.v9i2.55512

S. J. Kim and J. H. Choi, “Comparative Study for Inspection Planning of Aircraft Structural Components,” Int. J. Aeronaut. Sp. Sci., vol. 22, no. 2, 2021, doi: 10.1007/s42405-020-00319-x. https://doi.org/10.1007/s42405-020-00319-x

S. S. D. Setiowulandari, S. S. Dwi Setiowulandari, H. Ardianto, and H. Setiawan, “ANALISIS WINDSHIELD PESAWAT BOEING 737-NG TERHADAP KEGAGALAN DENGAN MENGGUNAKAN FAILURE MODE EFFECT AND ANALYSIS DAN WEIBULL,” Tek. STTKD J. Tek. Elektron. Engine, vol. 8, no. 2, 2022, doi: 10.56521/teknika.v8i2.674. https://doi.org/10.56521/teknika.v8i2.674

Component Reliability Report - 2024-09. 2024.

A. L. Karimah, M. I. Mawarda, W. Pauru’, Y. Ramadhan, and Y. Amalia, “Analisis Kegagalan Material Pada Sayap Pesawat Terbang (Review),” Jumantara J. Manaj. dan Teknol. Rekayasa, vol. 1, no. 1, 2022, doi: 10.28989/jumantara.v1i1.1266. https://doi.org/10.28989/jumantara.v1i1.1266

X. Wang et al., “Damage behavior and assessment of aeronautical PMMA subjected to high-velocity water-jet impact,” Wear, vol. 534–535, 2023, doi: 10.1016/j.wear.2023.205145. https://doi.org/10.1016/j.wear.2023.205145

N. Utami and R. Yonathan, “ANALISIS CACAT PERMUKAAN LOGAM FUSELAGE SKIN BOEING 737-9 MENGGUNAKAN PROBE FREQUENCY OF EDDY CURRENT 10.000 – 500.000 Hz,” Tek. STTKD J. Tek. Elektron. Engine, vol. 9, no. 1, 2023, doi: 10.56521/teknika.v9i1.975. https://doi.org/10.56521/teknika.v9i1.975

“Crane, A. (2002). Aircraft Systems: A Pilot’s Guide to Understanding Aircraft Instruments, Aircraft Systems, and Engines. Washington/Newcastle: ASA Publishing.”

Published
2025-03-26
 
Section
Articles