Optimization of Steam Methane Reforming Process Through Addition of Hydrogen Gas to Hydrogen Plant in Oleochemical Industry


Optimasi Proses Steam Methane Reforming Melalui Penambahan Gas Hidrogen pada Hydrogen Plant di Industri Oleokimia


  • (1) * Erda Rahmilaila Desfitri            Universitas Bung Hatta  
            Indonesia

  • (2)  Zulfebri Ansyah            Universitas Bung Hatta  
            Indonesia

  • (3)  mardian            Universitas Bung Hatta  
            Indonesia

  • (4)  Reni Desmiarti            Universitas Bung Hatta  
            Indonesia

    (*) Corresponding Author

Abstract

Steam Methane Reforming (SMR) merupakan teknologi produksi hidrogen yang beroperasi pada suhu 750-900°C menggunakan katalis berbasis nikel dengan sifat sangat endotermik. Penelitian ini mengkaji pengaruh penambahan hidrogen pada umpan sebagai alternatif optimasi proses di PT Ecogreen Oleochemicals Batam, merespons perubahan komposisi gas alam dari 86% menjadi 82% metana dan peningkatan etana-propana. Perubahan ini menyebabkan ketidakstabilan proses dan pembentukan karbon yang berlebih, mengakibatkan deaktivasi katalis ketika peningkatan rasio steam-to-carbon tidak memungkinkan karena keterbatasan operasional. Hasil penelitian menunjukkan korelasi antara suhu reformer, konsumsi bahan bakar NG, dan yield produk. Penambahan hidrogen terbukti efektif mencegah pembentukan karbon dan mempertahankan stabilitas proses. Studi ini memberikan solusi praktis untuk optimasi produksi hidrogen melalui keseimbangan penambahan hidrogen, suhu reformer, dan efisiensi bahan bakar.

References

I. Dincer and C. Acar, “Review and evaluation of hydrogen production methods for better sustainability,” Int. J. Hydrogen Energy, vol. 40, no. 34, pp. 11094–11111, 2015, https://doi.org/10.1016/j.ijhydene.2014.12.035.

C. H. Bartholomew, “Carbon Deposition in Steam Reforming and Methanation,” Catal. Rev., vol. 24, no. 1, pp. 67–112, Jan. 1982, https://doi.org/10.1080/03602458208079650

M. M. Aba, I. L. Sauer, and N. B. Amado, “Comparative review of hydrogen and electricity as energy carriers for the energy transition,” Int. J. Hydrogen Energy, vol. 57, pp. 660–678, 2024, https://doi.org/10.1016/j.ijhydene.2024.01.034.

P. Ferreira‐Aparicio, M. J. Benito, and J. L. Sanz, “New Trends in Reforming Technologies: from Hydrogen Industrial Plants to Multifuel Microreformers,” Catal. Rev., vol. 47, no. 4, pp. 491–588, Oct. 2005, https://doi.org/10.1080/01614940500364958

G. Garbarino, F. Pugliese, T. Cavattoni, G. Busca, and P. Costamagna, “A study on CO2 methanation and steam methane reforming over commercial Ni/calcium aluminate catalysts,” Energies, vol. 13, no. 11, 2020, https://doi.org/10.3390/en13112792

K. Aasberg-petersen, C. S. Nielsen, and L. Susanne, “Membrane reforming for hydrogen,” vol. 46, 1998.

W. Taifan and J. Baltrusaitis, “CH4 conversion to value added products: Potential, limitations and extensions of a single step heterogeneous catalysis,” Appl. Catal. B Environ., vol. 198, pp. 525–547, 2016, https://doi.org/10.1016/j.apcatb.2016.05.081.

D. Pashchenko and I. Makarov, “Carbon deposition in steam methane reforming over a Ni-based catalyst: Experimental and thermodynamic analysis,” Energy, vol. 222, p. 119993, 2021, https://doi.org/10.1016/j.energy.2021.119993.

H. Khani, N. Khandan, M. Hassan Eikani, and A. Eliassi, “Production of clean hydrogen fuel on a bifunctional iron catalyst via chemical loop reforming of methanol,” Fuel, vol. 334, p. 126607, 2023, https://doi.org/10.1016/j.fuel.2022.126607.

New York State Energy Research and Development Authority, “Hydrogen Fact Sheet Hydrogen Production – Steam Methane Reforming (SMR),” p. 4, 2004, [Online]. Available: www.nyserda.org.

J. R. Rostrup-Nielsen and L. J. Christiansen, “Concepts in Syngas Manufacture,” 2011, [Online]. Available: https://api.semanticscholar.org/CorpusID:137427668.

T. Antonini, A. Di Carlo, P. U. Foscolo, K. Gallucci, and S. Stendardo, “Fluidized bed reactor assisted by Oxygen Transport Membranes: Numerical simulation and experimental hydrodynamic study,” Chem. Eng. J., vol. 377, p. 120323, 2019, https://doi.org/10.1016/j.cej.2018.11.021.

E. Science and H. Sharma, “Tri-Reforming Of Natural Gas For Hydrogen Production Submitted on partial fulfilment of the requirement for the award of degree of Masters in Technology in Environment Science & Technology Himanshu Sharma,” no. June, 2018, doi: 10.13140/RG.2.2.32514.09921.

B. Iswanto, W. Astono, and Y. Rezi, “Pengaruh Penambahan Gas Hidrogen Terhadap Peningkatan Gas Metan (Ch4) Pada Proses Dekomposisi Sampah Organik,” Indones. J. Urban Environ. Technol., vol. 8, no. 1, p. 97, 2016, doi: 10.25105/urbanenvirotech.v8i1.723.

E. Furimsky and F. E. Massoth, “Deactivation of hydroprocessing catalysts,” vol. 52, 1999.

R. S. Postma and L. Lefferts, “Effect of Hydrogen Addition on Coke Formation and Product Distribution in Catalytic Coupling of Methane,” Ind. Eng. Chem. Res., 2024, doi: 10.1021/acs.iecr.4c00381.

C. Agrafiotis, H. Von Storch, M. Roeb, and C. Sattler, “Solar thermal reforming of methane feedstocks for hydrogen and syngas production - A review,” Renew. Sustain. Energy Rev., vol. 29, pp. 656–682, 2014, doi: 10.1016/j.rser.2013.08.050.

T. M. Rizki, M. I. Yusuf, A. Hiendro, K. . Kwee, and Yandri, “Analisis Konsumsi Bahan Bakar Pada Pembangkit Listrik Tenaga Uap (Pltu) (Studi Kasus Pltu Harjohn Timber Kubu Raya),” Tek. Elektro, vol. 2, no. 1, pp. 1–10, 2021.

DOI: https://doi.org/10.26418/j3eit.v9i2.48816

J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, and B. M. Weckhuysen, “Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides,” Chem. Rev., vol. 114, no. 20, pp. 10613–10653, Oct. 2014, doi: 10.1021/cr5002436.

Published
2025-03-31
 
Section
Articles