Tensile Strength and Microstructure Analysis of HDPE and PP Plastic Waste-Based Composites with Cassava Pulp Filler
Analisis Kekuatan Tarik dan Mikrostruktur Komposit Berbasis Limbah Plastik HDPE dan PP dengan Filler Ampas Singkong
Abstract
Waste is unused material from human or industrial activities. High Density Polyethylene (HDPE) is a safe plastic, while Polypropylene (PP) is a recyclable thermoplastic, potential as a matrix in composite particle boards. Specimen testing includes tensile tests and macro-microstructural analysis. The highest tensile strength, 23.642 MPa, was found in 100% HDPE composition. A blend of 60% HDPE, 30% PP, and 10% cassava pulp reached 16.026 MPa. In contrast, the lowest strength, 4.420 MPa, was in 60% PP, 35% HDPE, and 5% cassava pulp. Increasing HDPE boosts material strength due to its strong and flexible mechanical properties, but too much cassava pulp weakens it. Macro analysis showed air cavities in the specimen's center, while micro analysis revealed HDPE and PP did not mix homogeneously, with cassava pulp more mixed in PP.
References
H. P. Putra and Y. Yuriandala, “Studi Pemanfaatan Sampah Plastik Menjadi Produk dan Jasa Kreatif,” J. Sains &Teknologi Lingkung., vol. 2, no. 1, pp. 21–31, 2010, doi: 10.20885/jstl.vol2.iss1.art3.
Abdurahim Sidiq and V. P. E. Prabowo, “PEMANFAATAN LIMBAH PLASTIK HDPE DAN PET DIJADIKAN SEBAGAI PAVING BLOCK DENGAN MENGGUNAKAN MESIN PELEBUR PLASTIK,” Progr. Stud. Tek. Mesin Fak. Tek. Univ. Islam Kalimantan MAB, 2022.
Astrit Kirana, “Analisis Variasi Komposisi Limbah Plastik Polyethylene Terephthalate, Limbah Polypropylene, dan Serbuk Kayu Gergaji Terhadap Sifat Mekanik Dan Sifat Fisis Sebagai Wood Plastic Composite,” Thesis, Progr. MAGISTER Bid. KEAHLIAN Mater. Inov. Dep. Tek. Mater. Fak. Teknol. Ind. Inst. Teknol. SEPULUH Nop. SURABAYA, 2018, [Online]. Available: https://repository.its.ac.id/57640/1/02511650010009_MASTER THESIS.pdf
A. Dedi Kurniawan, “Pemanfaatan Limbah Serat (Fiber) Buah Kelapa Sawit Dan Plastik Daur Ulang (Polypropylene) Sebagai Material Komposit Papan Partikel (Particle Board),” J. Renew. Energy Mech., vol. 3, no. 02, pp. 60–70, 2020, doi: 10.25299/rem.2020.vol3.no02.4884.
A. J. Rudend and J. Hermana, “Kajian Pembakaran Sampah Plastik Jenis Polipropilena (PP) Menggunakan Insinerator,” J. Tek. ITS, vol. 9, no. 2, 2021, doi: 10.12962/j23373539.v9i2.55410.
N. Asni, D. Saleh, and N. Rahmawati, “Plastik Biodegradable Berbahan Ampas Singkong dan Polivinil Asetat,” Pros. Semin. Nas. Fis., vol. 4, pp. 57–62, 2015.
D. Handoko, I. Iyus, and A. Manurung, “Analisa Sifat Mekanik Komposit Limbah Limbah Plastik PP (Polypropylene) dan Limbah Serbuk Kayu Durian,” J. Syntax Admiration, vol. 3, no. 12, pp. 1515–1521, 2022, doi: 10.46799/jsa.v3i12.495.
A. F. Johari and D. T. Santoso, “Pengaruh Temperatur terhadap Pembuatan Papan Komposit Sekam Padi Berbasis Limbah HDPE menggunakan Metode Hot Press,” J. Rekayasa Mesin, vol. 16, no. 1, pp. 17–24, 2021, doi: 10.32497/jrm.v16i1.2036.
H. Ramagisandy and R. Siswanto, “Analisa Hasil Uji Kekuatan Tarik, Tekan & Struktur Makro Sampah Plastik Jenis Pet, Hdpe, Dan Campuran (Pet+Hdpe),” Jtam Rotary, vol. 3, no. 2, pp. 245–258, 2021, doi: 10.20527/jtam_rotary.v3i2.4366.
F. A. Akbar, “Pengaruh variasi komposit plastik polipropilena dengan teoung sagu terhadap sifat ekanik dalam pembuatan service wedge clamp,” 2020.
W. T. Putra, Y. Winardi, and F. Kurniawan, “Pengaruh kekuatan tarik dan struktur mikro dari bahan campuran plastic waste jenis HDPE, PET dan serbuk kayu kelapa,” J. Tek. Juara Aktif Glob. Optimis, vol. 2, no. 1, pp. 17–25, 2022, [Online]. Available: https://www.sttibontang.ac.id/jurnal/index.php/jago/article/view/54
B. Statements and T. Size, “Standard Test Method for Tensile Properties of Plastics,” vol. 14, no. 200, pp. 1–6, 1995.
M. Iman Mujiarto, ST., “SIFAT DAN KARAKTERISTIK MATERIAL PLASTIK DAN BAHAN ADITIF Iman Mujiarto,” Repository.Uin-Suska.Ac.Id, 2023, [Online]. Available: http://repository.uin-suska.ac.id/26740/1/Haki Buku Genealogi Intelektual Melayu Tradisi Pemikiran Islam Abad ke 19 di Kerajaan Riau Lingga.pdf
J. Manya, M. T. Bwankwot, E. D. Kambai, and J. Shaibu, “The effects of cassava peel content on mechanical properties of low-density polyethylene (LDPE) composites,” Sci. World J., vol. 19, no. 2, pp. 375–384, 2024, doi: 10.4314/swj.v19i2.13.
S. M. L. R. Samarakoon, M. D. Y. Milani, L. D. C. Nayanajith, R. C. W. Arachchige, and C. P. Abeyratne, “Preparation and characterization of Cassava starch/Polybutylene (adipate-co-terephthalate) biodegradable composite film,” Sri Lankan J. Phys., vol. 24, no. 1, pp. 34–48, 2023, doi: 10.4038/sljp.v24i1.8124.
L. Fernanda Sierra Montes, M. Andrea Melaj, M. Cecilia Lorenzo, L. Ribba, and M. Alejandra Garcia, “Biodegradable Composite Materials based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part Fiber,” Sustain. Polym. Energy, vol. 1, no. 1, pp. 10004–10004, 2023, doi: 10.35534/spe.2024.10004.
S. B. Hosseini, M. Gaff, H. Li, and D. Hui, “Effect of fiber treatment on physical and mechanical properties of natural fiber-reinforced composites: A review,” Rev. Adv. Mater. Sci., vol. 62, no. 1, 2023, doi: 10.1515/rams-2023-0131.
P. Rachtanapun et al., “Effect of Plasma Treatment on Bamboo Fiber-Reinforced Epoxy Composites,” Polymers (Basel)., vol. 16, no. 7, 2024, doi: 10.3390/polym16070938.
C. Cazan, M. Cosnita, and A. Duta, “Effect of PET functionalization in composites of rubber–PET–HDPE type,” Arab. J. Chem., vol. 10, no. 3, pp. 300–312, 2017, doi: 10.1016/j.arabjc.2015.10.005.
D. Behera, S. S. Pattnaik, D. Nanda, P. P. Mishra, S. Manna, and A. K. Behera, “A review on bamboo fiber reinforced composites and their potential applications,” Emergent Mater., no. August, 2024, doi: 10.1007/s42247-024-00832-9.
H. T. N. Kuan, M. Y. Tan, Y. Shen, and M. Y. Yahya, “Mechanical properties of particulate organic natural filler-reinforced polymer composite: A review,” Compos. Adv. Mater., vol. 30, p. 263498332110075, 2021, doi: 10.1177/26349833211007502.
C. Onuoha, O. O. Onyemaobi, C. N. Anyakwo, and G. C. Onuegbu, “Effect Of Filler Loading And Particle Size On The Mechanical Properties Of Periwinkle Shell-Filled Recycled Polypropylene Composites,” Am. J. Eng. Res., vol. 6, no. 4, pp. 72–79, 2017, [Online]. Available: www.ajer.org
S. Kuciel, K. Rusin-Żurek, and M. Kurańska, “The Influence of Filler Particle Size on the Strength Properties and Mechanical Energy Dissipation Capacity of Biopoly(Ethylene Terephthalate) BioPET/Eggshell Biocomposites,” Recycling, vol. 9, no. 5, 2024, doi: 10.3390/recycling9050088.
Rohmat, I. Widiastuti, and D. S. Wijayanto, “Characteristics of recycled HDPE/bamboo fibre composite,” IOP Conf. Ser. Earth Environ. Sci., vol. 1808, no. 1, 2021, doi: 10.1088/1742-6596/1808/1/012010.
K. Jarukumjorn, N. Suppakarn, and J. Kluengsamrong, “Mechanical and morphological properties of sisal/glass fiber-polypropylene composites,” Adv. Mater. Res., vol. 47-50 PART 1, no. September, pp. 486–489, 2008, doi: 10.4028/www.scientific.net/amr.47-50.486.
A. Albedah, H. S. Abdo, S. M. A. K. Mohammed, B. A. B. Bouiadjra, E. H. Al-Ghurabi, and O. Y. Alothman, “Potential of recycled polypropylene: A study on effect of natural fiber on the morphology and properties of biocomposite,” J. King Saud Univ. - Sci., vol. 36, no. 5, p. 103167, 2024, doi: 10.1016/j.jksus.2024.103167.
S. J. Kim, J. B. Moon, G. H. Kim, and C. S. Ha, “Mechanical properties of polypropylene/natural fiber composites: Comparison of wood fiber and cotton fiber,” Polym. Test., vol. 27, no. 7, pp. 801–806, 2008, doi: 10.1016/j.polymertesting.2008.06.002.
I. D. Ibrahim, “Improvement of mechanical and wear behaviour of fiber-reinforced polypropylene composites for the rail industry,” Hybrid Adv., vol. 10, no. December 2024, p. 100457, 2025, doi: 10.1016/j.hybadv.2025.100457.
M. Mohammed et al., “Interfacial Bonding Mechanisms of Natural Fibre-Matrix Composites: An Overview,” BioResources, vol. 17, no. 4, pp. 7031–7090, 2022, doi: 10.15376/BIORES.17.4.MOHAMMED.
Y. J. Song et al., “Facile Enhancement of Mechanical Interfacial Strength of Recycled Carbon Fiber Web-Reinforced Polypropylene Composites via a Single-Step Silane Modification Process,” Polymers (Basel)., vol. 17, no. 4, pp. 1–13, 2025, doi: 10.3390/polym17040483.
Copyright (c) 2025 Arie Mastiko Aji Arie Mastiko Aji

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.