Analysis of the Strength Thorn Pandan Leaves Fiber Composite: Woven Vs Random Fibers


  • (1) * Lani            Universitas Muhammadiyah Pontianak  
            Indonesia

  • (2)  Fuazen            Universitas Muhammadiyah Pontianak  
            Indonesia

  • (3)  Eko Julianto            Universitas Muhammadiyah Pontianak  
            Indonesia

  • (4)  Muhammad Iwan            Universitas Muhammadiyah Pontianak  
            Indonesia

  • (5)  Eko Sarwono            Universitas Muhammadiyah Pontianak  
            Indonesia

  • (6)  Gunarto            Universitas Muhammadiyah Pontianak  
            Indonesia

    (*) Corresponding Author

Abstract

This study focuses on assessing a composite material that uses pearly leaf reinforcement and a polyester resin matrix as a construction material for energy-efficient automobile bodies. The traction strength test and impact resistance test of thorn panda leaf fiber are conducted to evaluate the difference in fiber direction, namely induced and random. This discovery is anticipated to be advantageous for the development of energy-efficient automobile bodywork. The highest traction force recorded is 2199.63 MPa in the random fiber direction, whereas the lowest traction strength is 2077.43 MPa in the fiber direction. The pulling force increases when the direction of the fiber aligns with the pulling manner, resulting in more force. The impact's greatest absorbent energy strength is 0.623 j in the direction of the fiber, while the least absorbent energy strength is 0.595 j in the direction of the random fiber.

References

D. Suherman, “ANALYSIS OF AIR TRANSLATOR SYSTEMS FOR AUTOMOBILE ENERGY DAMAGES IN CONFORMITY WITH SHELL ECO MARATHON 2022,” 2023.

O. Andriyanto and R. Krisnaputra, “Composite Body Manufacturing Process and Strength Analysis of Composite Material of Yacaranda Electric Car,” Univ. Gadjah Mada, 2018.

R. L. Pambudi and H. Yudiono, “The Influence of Duri Fiber Pandan Angle Orientation on Composite Impact Strength as an Alternative Material for Car Bumper,” J. Kompetensi Tek., vol. 12, no. 2, pp. 21–29, 2020, doi: 10.15294/jkomtek.v12i2.23329.

W A. Wirawan, S. A. S. Budi, and T. D. Widodo, “The Influence of Matrix Types on Attractive Properties in Natural Composite Fibers,” Politek. Negeri Malang, vol. 3, no. January, pp. 2476–9983, 2017.

D. Hartini, L. R. Pinandita, and P. N. Mubarak, “Tensile Strength Analysis of Sea Pandan Leaves (Pandanus Tectorius) Fiber Reinforced Epoxy Composite,” Vortex, vol. 3, no. 2, p. 108, 2022, doi: 10.28989/vortex.v3i2.1242.

A. Rahman, M. Farid, and H. Ardhyananta, “The Effects of Composite Material Composition with Natural Fiber Enhancing Polypropylene Matrix on Morphology and Strength of Physical Properties,” Tek. ITS, vol. 5, no. 2, pp. 209–211, 2016.

L. Diana, A. Ghani Safitra, and M. Nabiel Ariansyah, “Traction Strength Analysis on Composite Materials with Polymer Amplifier Fibers,” J. Engine Energy, Manufacturing, and Mater., vol. 4, no. 2, pp. 59–67, 2020.

A. Rachman, “VOLUME OF WITHWITHING FIBERS TO BE ACCEPTED,” 2022.

M. Muhammad and R. Putra, “The Composite Mechanical Test of Strengthening Fibers of Duri and Polyester Resins With Variations in Composition of Heavy Fraction Methods,” J. Teknol. Kim. Unimal, vol. 6, no. 2, p. 63, 2018, doi: 10.29103/jtku.v6i2.476.

P. Widianto, “Mechanical Engineering Study Program of the Faculty of Engineering of Muhammadiyah University of Surakarta 2020,” 2020.

M. H. Alamsyah and G. Gundara, “Analysis of Composite Mechanical Properties of Brake Campaign Material With Yellow Wood Powder Amplifier,” R.E.M. (Manufacturing Energy Engineering) J., vol. 5, no. 1, pp. 9–13, 2021, doi: 10.21070/r.e.m.v5i1.870.

Yasa Principal, “IMPACTING VARIATIONS OF COMPOSIT FIBER ARAH BERPENGUAT.pdf.” 2016.

Arbi Syahrian, “Fronting Traction Strength and Impact of Composite Resin Fibers,” 2022.

Published
2024-12-12
Section
Articles