Analysis and Modeling of Wheel-Based Floating Energy Generation Technology
Analisis dan Pemodelan Teknologi Pembangkit Energi Terapung Berbasis Kincir
Abstract
This research aims to analyze and model wheel-based floating energy generation technology. The current energy crisis requires us to look for sustainable solutions to meet energy needs. The Indonesian government has targeted renewable energy use of 23% by 2025, especially in remote areas. One solution to overcome this challenge is energy storage technology. Energy storage using floating technology is an innovative solution that is being developed. In this research, we analyze the design of a floating energy wheel with a capacity of 110 kW as an alternative source of electrical energy. Wheel energy is produced from a combination of buoyancy energy and energy originating from the weight of water which is produced by the difference in fluid density in the water and air environments. The research results show that this floating energy wheel can produce a torque of 7710,62 Nm and a power of 113,83 kW, showing great potential in renewable energy storage applications. Wheel-based floating energy generation technology has the potential to be an innovative solution in renewable energy storage. Further research needs to be carried out on a larger scale and field tests to validate the potential and efficiency of this technology in the real world
References
A. H. Bagdadee and L. Zhang, “Electrical power crisis solution by the developing renewable energy based power generation expansion,” Energy Reports, vol. 6, pp. 480–490, 2020, doi: 10.1016/j.egyr.2019.11.106.
G. Grandea, “Food Crisis, Energy Crisis and Recession: A Global Opportunity and Challenge towards Endemic,” Int. J. Sci. Soc., vol. 4, no. 4, pp. 223–233, 2022, doi: 10.54783/ijsoc.v4i4.567.
M. S. Islam, A. Q. Al-Amin, and M. S. K. Sarkar, “Energy crisis in Bangladesh: Challenges, progress, and prospects for alternative energy resources,” Util. Policy, vol. 71, no. July 2019, p. 101221, 2021, doi: 10.1016/j.jup.2021.101221.
M. Shahbaz and H. Hooi, “Does financial development increase energy consumption ? The role of industrialization and urbanization in Tunisia,” Energy Policy, vol. 40, pp. 473–479, 2012, doi: 10.1016/j.enpol.2011.10.050.
H. Sasana and A. E. Putri, “The Increase of Energy Consumption and Carbon Dioxide ( CO 2 ) Emission in Indonesia,” Increase Energy Consum. Carbon Dioxide ( CO 2 ) Emiss. Indones., vol. 01008, pp. 1–5, 2018.
A. Rehman et al., “The Energy Mix Dilemma and Environmental Sustainability :,” 2021.
Z. Wang, “Role of Renewable Energy and Non-Renewable Energy consumption on EKC: Evidence from Pakistan,” J. Clean. Prod., 2017, doi: 10.1016/j.jclepro.2017.03.203.
A. Kumar, K. Kumar, N. Kaushik, S. Sharma, and S. Mishra, “Renewable energy in India : Current status and future potentials,” Renew. Sustain. Energy Rev., vol. 14, no. 8, pp. 2434–2442, 2010, doi: 10.1016/j.rser.2010.04.003.
I. Dincer, “Renewable energy and sustainable development: A crucial review,” Renew. Sustain. energy Rev., vol. 4, no. 2, pp. 157–175, 2000, doi: 10.1016/S1364-0321(99)00011-8.
P. A. Owusu and S. Asumadu-Sarkodie, “A review of renewable energy sources, sustainability issues and climate change mitigation,” Cogent Eng., vol. 3, no. 1, pp. 1–14, 2016, doi: 10.1080/23311916.2016.1167990.
D. Mugisidi, I. N. Fauzi, O. Heriyani, Y. Djeli, E. Aidhilhan, and P. H. Gunawan, “Development of the Dethridge Wheel Blade Shape for Hydropower Generation in Irrigation Canals in Indonesia,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 98, no. 2, pp. 146–156, 2022, doi: 10.37934/arfmts.98.2.146156.
T. Weitzel and C. H. Glock, “Energy management for stationary electric energy storage systems: A systematic literature review,” Eur. J. Oper. Res., vol. 264, no. 2, pp. 582–606, 2018, doi: 10.1016/j.ejor.2017.06.052.
T. M. Gür, “Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage,” Energy Environ. Sci., vol. 11, no. 10, pp. 2696–2767, 2018, doi: 10.1039/c8ee01419a.
G. Castagneto Gissey, P. E. Dodds, and J. Radcliffe, “Market and regulatory barriers to electrical energy storage innovation,” Renew. Sustain. Energy Rev., vol. 82, no. July 2017, pp. 781–790, 2018, doi: 10.1016/j.rser.2017.09.079.
S. Ould Amrouche, D. Rekioua, T. Rekioua, and S. Bacha, “Overview of energy storage in renewable energy systems,” Int. J. Hydrogen Energy, vol. 41, no. 45, pp. 20914–20927, 2016, doi: 10.1016/j.ijhydene.2016.06.243.
S. C. Smith, P. K. Sen, and B. Kroposki, “Advancement of energy storage devices and applications in electrical power system,” IEEE Power Energy Soc. 2008 Gen. Meet. Convers. Deliv. Electr. Energy 21st Century, PES, pp. 1–8, 2008, doi: 10.1109/PES.2008.4596436.
D. Larcher and J. M. Tarascon, “Towards greener and more sustainable batteries for electrical energy storage,” Nat. Chem., vol. 7, no. 1, pp. 19–29, 2015, doi: 10.1038/nchem.2085.
M. Beaudin, H. Zareipour, A. Schellenberglabe, and W. Rosehart, “Energy storage for mitigating the variability of renewable electricity sources: An updated review,” Energy Sustain. Dev., vol. 14, no. 4, pp. 302–314, 2010, doi: 10.1016/j.esd.2010.09.007.
E. M. G. Rodrigues, R. Godina, S. F. Santos, A. W. Bizuayehu, J. Contreras, and J. P. S. Catalão, “Energy storage systems supporting increased penetration of renewables in islanded systems,” Energy, vol. 75, pp. 265–280, 2014, doi: 10.1016/j.energy.2014.07.072.
Ö. E. Tugrul Atasoy, Hülya Erdener Akinç, “Integration of Renewable Energy Systems in Smart Cities,” Integr. Renew. Energy Syst. Smart Cities, vol. 5, pp. 547–550, 2015.
C. Breyer, A. Azzuni, and C. Breyer, “ScienceDirect ScienceDirect Energy security and energy storage technologies Energy security and energy storage technologies the feasibility of using the heat demand-outdoor temperature function for a long-term district heat demand forecast,” Energy Procedia, vol. 155, pp. 237–258, 2018, doi: 10.1016/j.egypro.2018.11.053.
S. Wicki, E. G. Hansen, S. Wicki, and E. G. Hansen, “Clean Energy Storage Technology in the Making : An Innovation Systems Perspective on Flywheel Energy Storage,” J. Clean. Prod., 2017, doi: 10.1016/j.jclepro.2017.05.132.
M. Ruhul and A. Bhuiyan, “Overcome the future environmental challenges through,” no. May, pp. 402–416, 2022, doi: 10.1049/mna2.12148.
F. Manzano-agugliaro, F. G. Montoya, C. Gil, A. Alcayde, J. Gómez, and R. Ba, “Optimization methods applied to renewable and sustainable energy : A review,” vol. 15, pp. 1753–1766, 2011, doi: 10.1016/j.rser.2010.12.008.
X. F. Zheng, C. X. Liu, Y. Y. Yan, and Q. Wang, “A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications,” Renew. Sustain. Energy Rev., vol. 32, no. May 2019, pp. 486–503, 2020, doi: 10.1016/j.rser.2013.12.053.
X. Li, B. Anvari, A. Palazzolo, Z. Wang, and H. Toliyat, “A Utility-Scale Flywheel Energy Storage System with a Shaftless, Hubless, High-Strength Steel Rotor,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6667–6675, 2018, doi: 10.1109/TIE.2017.2772205.
D. Nderitu and P. V Preckel, “Lucart to try out PM,” PPI This Week, vol. 16, no. 44, p. 3, 2001.
D. Buhagiar and T. Sant, “Modelling of a novel hydro-pneumatic accumulator for large-scale offshore energy storage applications,” J. Energy Storage, vol. 14, pp. 283–294, 2017, doi: 10.1016/j.est.2017.05.005.
J. D. Hunt, M. A. V. Freitas, and A. O. Pereira Junior, “Enhanced-Pumped-Storage: Combining pumped-storage in a yearly storage cycle with dams in cascade in Brazil,” Energy, vol. 78, pp. 513–523, 2014, doi: 10.1016/j.energy.2014.10.038.
A. H. Alami, “Experimental assessment of compressed air energy storage (CAES) system and buoyancy work energy storage (BWES) as cellular wind energy storage options,” J. Energy Storage, vol. 1, no. 1, pp. 38–43, 2015, doi: 10.1016/j.est.2015.05.004.
Y. M. Kim, D. G. Shin, and D. Favrat, “Operating characteristics of constant-pressure compressed air energy storage ( CAES ) system combined with pumped hydro storage based on energy and exergy analysis,” Energy, vol. 36, no. 10, pp. 6220–6233, 2011, doi: 10.1016/j.energy.2011.07.040.
P. Y. Li, T. W. Simon, J. D. Van De Ven, and S. E. Crane, “Compressed Air Energy Storage for Offshore Wind Turbines,” 2011.
Z. Wang, W. Xiong, D. S. K. Ting, R. Carriveau, and Z. Wang, “Comparison of underwater and underground CAES systems for integrating floating offshore wind farms,” J. Energy Storage, vol. 14, pp. 276–282, 2017, doi: 10.1016/j.est.2017.11.001.
A. Vasel-be-hagh, R. Carriveau, and D. S. Ting, “Structural analysis of an underwater energy storage accumulator,” Sustain. Energy Technol. Assessments, vol. 11, pp. 165–172, 2015, doi: 10.1016/j.seta.2014.11.004.
H. Wang et al., “applied sciences Underwater Compressed Gas Energy Storage ( UWCGES ): Current Status , Challenges , and Future Perspectives,” 2022.
A. H. Alami, “Analytical and experimental evaluation of energy storage using work of buoyancy force,” J. Renew. Sustain. Energy, vol. 6, no. 1, 2014, doi: 10.1063/1.4866036.
K. M. Powell and T. F. Edgar, “An adaptive-grid model for dynamic simulation of thermocline thermal energy storage systems,” Energy Convers. Manag., vol. 76, pp. 865–873, 2013, doi: 10.1016/j.enconman.2013.08.043.
R. Cazzaniga, M. Cicu, M. Rosa-clot, P. Rosa-clot, G. M. Tina, and C. Ventura, “Compressed air energy storage integrated with fl oating photovoltaic plant,” J. Energy Storage, vol. 13, pp. 48–57, 2017, doi: 10.1016/j.est.2017.06.006.
J. David et al., “Buoyancy Energy Storage Technology : An energy storage solution for islands , coastal regions , offshore wind power and hydrogen compression,” vol. 40, no. May, pp. 1–14, 2021, doi: 10.1016/j.est.2021.102746.
M. K. Koukou, M. G. Vrachopoulos, and N. S. Tachos, “Experimental and computational investigation of a latent heat energy storage system with a staggered heat exchanger for various phase change materials,” Therm. Sci. Eng. Prog., 2018, doi: 10.1016/j.tsep.2018.05.004.
K. P. Bassett, R. Carriveau, and D. S. K. Ting, “Integration of buoyancy-based energy storage with utility scale wind energy generation,” J. Energy Storage, vol. 14, pp. 256–263, 2017, doi: 10.1016/j.est.2017.04.013.
P. Nikolaidis and A. Poullikkas, “Cost metrics of electrical energy storage technologies in potential power system operations,” Sustain. Energy Technol. Assessments, vol. 25, no. November 2017, pp. 43–59, 2018, doi: 10.1016/j.seta.2017.12.001.
J. D. Hunt et al., “Buoyancy Energy Storage Technology: An energy storage solution for islands, coastal regions, offshore wind power and hydrogen compression,” J. Energy Storage, vol. 40, no. June, pp. 1–14, 2021, doi: 10.1016/j.est.2021.102746.
C. M. Costa, J. C. Barbosa, R. Gonçalves, H. Castro, F. J. Del Campo, and S. Lanceros-méndez, “Recycling and environmental issues of lithium-ion batteries : Advances , challenges and opportunities,” Energy Storage Mater., vol. 37, no. January, pp. 433–465, 2021, doi: 10.1016/j.ensm.2021.02.032.
A. J. Pimm, “The University of Nottingham Department of Mechanical , Materials and Manufacturing Engineering Analysis of Flexible Fabric Structures by,” no. July, 2011.
A. H. Alami, General Concepts BT - Mechanical Energy Storage for Renewable and Sustainable Energy Resources. 2020.
Budiarso, D. Adanta, Warjito, A. I. Siswantara, P. Saputra, and R. Dianofitra, “Optimization of the Water Volume in the Buckets of Pico Hydro Overshot Waterwheel by Analytical Method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 316, no. 1, 2018, doi: 10.1088/1757-899X/316/1/012056.
A. Bewley, B. Upcroft, and P. Lever, “Automatic in-bucket volume estimation for dragline operations Automatic In-Bucket Volume Estimation for Dragline,” no. January, 2009.
Yunus A. Cengel, Fluid Mechanics. 2016.
A. Sifa, B. Badruzzaman, T. Endramawan, I. Maolana, and A. R. Muhammad, “Pengujian Variasi Jumlah Blade Fiberglass Kincir Angin Type Horizontal Untuk Pemompa Air Garam,” Din. Tek. Mesin, vol. 8, no. 2, pp. 89–97, 2018, doi: 10.29303/dtm.v8i2.208.
D. Kodirov and O. Tursunov, “Calculation of Water Wheel Design Parameters for Micro Hydroelectric Power Station,” E3S Web Conf., vol. 97, 2019, doi: 10.1051/e3sconf/20199705042.
A. F. Purwaningsih, “Analisis kestabilan model persamaan gerak kincir air,” pp. 1–10, 2014.
K. L. Richards, Design Engineer’s Reference Guide: Mathematics, Mechanics, and Thermodynamics. 2014.
C. Tang, “Analysis and Modelling of the Effects of Inertia and Parameter Errors on Wind Turbine Output Power,” Master Thesis, 2009.
Y. Hara, K. Hara, and T. Hayashi, “Moment of inertia dependence of vertical axis wind Turbines in pulsating winds,” Int. J. Rotating Mach., vol. 2012, 2012, doi: 10.1155/2012/910940.
B. Karaoglu, Classical Physics. 2020.
M. Hussey, Fundamental of Mechanical Vibrations. 1983.
M. Denny, “The efficiency of overshot and undershot waterwheels,” IOP Conf. Ser. Earth Environ. Sci., 2003, doi: 10.1088/0143-0807/25/2/006.
T. G. Elizarova, “Knudsen effect and a unified formula for mass flow-rate in microchannels,” no. August, 2014.
X. D. Dongfang, W. Mountain, and N. Forest, “Dongfang Angular Motion Law and Operator Equations,” no. March, 2023, doi: 10.13140/RG.2.2.30150.22085/1.
J. D. Louck, “Quantum Theory of Angular Momentum: Introduction,” Unitary Symmetry Comb., pp. 1–82, 2008, doi: 10.1142/9789812814739_0001.
V. S. Ermolin and T. V. Vlasova, “The generalized formula for angular velocity vector of the moving coordinate system,” AIP Conf. Proc., vol. 1959, 2018, doi: 10.1063/1.5034588.
Copyright (c) 2024 Yulikastomo -
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.