Thermodynamic Analysis of Hydrogen Production from Hydrogen Sulfide in Geothermal Power Plant by using Fe-Cl Hybrid Indirect Electrolysis

Published: Aug 18, 2023
Keywords:
Hydrogen, Hydrogen sulfide, Fe-Cl hybrid, Electrolysis, Geothermal

Main Article Content

Putri Fadhilla
Udi Harmoko
Marcelinus Christwardana

Abstract

Clean and sustainable energy sources are needed to meet global energy demand. Geothermal Power Plants (GPPs) may generate power from Earth's heat. However, GPPs release hazardous hydrogen sulfide (H2S) gas. To overcome this problem and maximize on resource potential, researchers have investigated converting GPP-emitted H2S into hydrogen (H2). The Fe-Cl hybrid indirect electrolysis technique is used to analyze the thermodynamics of hydrogen synthesis from H2S in GPPs. Electrolysis electricity, hydrogen generation rate, and electrolyzer energy and exergy efficiency are examined in the thermodynamic analysis. The foundation parameters show that the electrolysis process uses 20.57 kWh of power every kilogram of H2 generated. Energy and exergy efficiencies of the electrolyzer are 89.89% and 97.72%, respectively, exhibiting system efficiency. The research also examines how H2S mass flow rate and electrolysis temperature affect energy efficiency, exergy efficiency, and power consumption. Optimizing hydrogen generation and system performance requires these elements. This study analyzes the thermodynamics of hydrogen synthesis from H2S in GPPs to create sustainable and ecologically friendly energy options. H2S emissions from GPPs might be used to efficiently produce hydrogen as a renewable energy source with more research.

Article Details

Section
Articles

References

[1] Kumar S, Himanshu SK, and Gupta KK, “Effect of Global Warming on Mankind-A Review,” 2012. [Online]. Available: www.isca.in
[2] S. C. Wijayasekera, K. Hewage, O. Siddiqui, P. Hettiaratchi, and R. Sadiq, “Waste-to-hydrogen technologies: A critical review of techno-economic and socio-environmental sustainability,” International Journal of Hydrogen Energy, vol. 47, no. 9. Elsevier Ltd, pp. 5842–5870, Jan. 29, 2022. doi: 10.1016/j.ijhydene.2021.11.226.
[3] A. Mostafaeipour, S. J. Hosseini Dehshiri, and S. S. Hosseini Dehshiri, “Ranking locations for producing hydrogen using geothermal energy in Afghanistan,” Int J Hydrogen Energy, vol. 45, no. 32, pp. 15924–15940, Jun. 2020, doi: 10.1016/j.ijhydene.2020.04.079.
[4] M. M. Hadjiat et al., “Assessment of geothermal energy use with thermoelectric generator for hydrogen production,” Int J Hydrogen Energy, vol. 46, no. 75, pp. 37545–37555, Oct. 2021, doi: 10.1016/j.ijhydene.2021.06.130.
[5] M. Aziz, “Liquid hydrogen: A review on liquefaction, storage, transportation, and safety,” Energies, vol. 14, no. 18. MDPI, Sep. 01, 2021. doi: 10.3390/en14185917.
[6] M. E. Ramazankhani, A. Mostafaeipour, H. Hosseininasab, and M. B. Fakhrzad, “Feasibility of geothermal power assisted hydrogen production in Iran,” Int J Hydrogen Energy, vol. 41, no. 41, pp. 18351–18369, Nov. 2016, doi: 10.1016/j.ijhydene.2016.08.150.
[7] M. Kanoglu, A. Bolatturk, and C. Yilmaz, “Thermodynamic analysis of models used in hydrogen production by geothermal energy,” Int J Hydrogen Energy, vol. 35, no. 16, pp. 8783–8791, Aug. 2010, doi: 10.1016/j.ijhydene.2010.05.128.
[8] T. W. Hand, “Hydrogen Production Using Geothermal Energy,” 2008. [Online]. Available: https://digitalcommons.usu.edu/etd
[9] G. K. Karayel, N. Javani, and I. Dincer, “Effective use of geothermal energy for hydrogen production: A comprehensive application,” Energy, vol. 249, Jun. 2022, doi: 10.1016/j.energy.2022.123597.
[10] S. M. Alirahmi, E. Assareh, N. N. Pourghassab, M. Delpisheh, L. Barelli, and A. Baldinelli, “Green hydrogen & electricity production via geothermal-driven multi-generation system: Thermodynamic modeling and optimization,” Fuel, vol. 308, Jan. 2022, doi: 10.1016/j.fuel.2021.122049.
[11] U. Cardella, L. Decker, and H. Klein, “Roadmap to economically viable hydrogen liquefaction,” Int J Hydrogen Energy, vol. 42, no. 19, pp. 13329–13338, May 2017, doi: 10.1016/j.ijhydene.2017.01.068.
[12] Y. H. Chan et al., “Hydrogen sulfide (H2S) conversion to hydrogen (H2) and value-added chemicals: Progress, challenges and outlook,” Chemical Engineering Journal, vol. 458. Elsevier B.V., Feb. 15, 2023. doi: 10.1016/j.cej.2023.141398.
[13] E. Stefanakos, B. Krakow, and J. Mbah, “Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants Final Scientific /Technical Report,” 2007.
[14] K. Petrov, S. Z. Baykara, D. Ebrasu, M. Gulin, and A. Veziroglu, “An assessment of electrolytic hydrogen production from H2S in Black Sea waters,” Int J Hydrogen Energy, vol. 36, no. 15, pp. 8936–8942, Jul. 2011, doi: 10.1016/j.ijhydene.2011.04.022.
[15] S. Ouali, S. Chader, M. Belhamel, and M. Benziada, “The exploitation of hydrogen sulfide for hydrogen production in geothermal areas,” Int J Hydrogen Energy, vol. 36, no. 6, pp. 4103–4109, Mar. 2011, doi: 10.1016/j.ijhydene.2010.07.121.
[16] Y. H. Chan et al., “A state-of-the-art review on capture and separation of hazardous hydrogen sulfide (H2S): Recent advances, challenges and outlook,” Environmental Pollution, vol. 314. Elsevier Ltd, Dec. 01, 2022. doi: 10.1016/j.envpol.2022.120219.
[17] M. Finster, C. Clark, J. Schroeder, and L. Martino, “Geothermal produced fluids: Characteristics, treatment technologies, and management options,” Renewable and Sustainable Energy Reviews, vol. 50. Elsevier Ltd, pp. 952–966, Jun. 09, 2015. doi: 10.1016/j.rser.2015.05.059.
[18] A. Karapekmez and I. Dincer, “Modelling of hydrogen production from hydrogen sulfide in geothermal power plants,” Int J Hydrogen Energy, vol. 43, no. 23, pp. 10569–10579, Jun. 2018, doi: 10.1016/j.ijhydene.2018.02.020.
[19] H. Huang, J. Shang, Y. Yu, and K. H. Chung, “Recovery of hydrogen from hydrogen sulfide by indirect electrolysis process,” Int J Hydrogen Energy, vol. 44, no. 11, pp. 5108–5113, Feb. 2019, doi: 10.1016/j.ijhydene.2018.11.010.
[20] A. Bassani et al., “H2S in geothermal power plants: From waste to additional resource for energy and environment,” Chem Eng Trans, vol. 70, pp. 127–132, 2018, doi: 10.3303/CET1870022.
[21] A. G. De Crisci, A. Moniri, and Y. Xu, “Hydrogen from hydrogen sulfide: towards a more sustainable hydrogen economy,” International Journal of Hydrogen Energy, vol. 44, no. 3. Elsevier Ltd, pp. 1299–1327, Jan. 15, 2019. doi: 10.1016/j.ijhydene.2018.10.035.
[22] R. Somma, D. Granieri, C. Troise, C. Terranova, G. De Natale, and M. Pedone, “Modelling of hydrogen sulfide dispersion from the geothermal power plants of Tuscany (Italy),” Science of the Total Environment, vol. 583, pp. 408–420, Apr. 2017, doi: 10.1016/j.scitotenv.2017.01.084.
[23] K. Jangam, Y. Y. Chen, L. Qin, and L. S. Fan, “Perspectives on reactive separation and removal of hydrogen sulfide,” Chemical Engineering Science: X, vol. 11, Aug. 2021, doi: 10.1016/j.cesx.2021.100105.
[24] K. Vala Matthíasdóttir, “Removal of Hydrogen Sulfide from Non-Condensable Geothermal Gas at Nesjavellir Power Plant,” 2006.
[25] R. A. Adewale, A. S. Berrouk, and S. Dara, “A process simulation study of hydrogen and sulfur production from hydrogen sulfide using the Fe-Cl hybrid process,” J Taiwan Inst Chem Eng, vol. 54, pp. 20–27, Sep. 2015, doi: 10.1016/j.jtice.2015.03.018.
[26] M. Mahmoud, M. Ramadan, S. Naher, K. Pullen, M. Ali Abdelkareem, and A. G. Olabi, “A review of geothermal energy-driven hydrogen production systems,” Thermal Science and Engineering Progress, vol. 22, May 2021, doi: 10.1016/j.tsep.2021.100854.
[27] Y. A. Cengel and M. A. Boles, Thermodynamics: an Engineering Approach, Fifth Edition. McGraw-Hill, 2006.
[28] “https://webbook.nist.gov/chemistry/,” 2023.
[29] D. R. Gaskell, Introduction to the Thermodynamics of Materials, Fifth Edition. New York: Taylor & Francis, 2008.
[30] B. Tekkanat, Y. E. Yuksel, and M. Ozturk, “The evaluation of hydrogen production via a geothermal-based multigeneration system with 3E analysis and multi-objective optimization,” Int J Hydrogen Energy, Mar. 2022, doi: 10.1016/j.ijhydene.2022.11.185.
[31] S. Mizuta et al., “Hydrogen production from hydrogen sulfide by the iron-chlorine hybrid process,” Ind Eng Chem Res, vol. 30, no. 7, pp. 1601–1608, Jul. 1991, doi: 10.1021/ie00055a028.
[32] “https://exergy-calculator.ricklupton.name/browser/substance/,” Mar. 23, 2023.
[33] C. Yilmaz, M. Kanoglu, A. Bolatturk, and M. Gadalla, “Economics of hydrogen production and liquefaction by geothermal energy,” in International Journal of Hydrogen Energy, Jan. 2012, pp. 2058–2069. doi: 10.1016/j.ijhydene.2011.06.037.
[34] A. Karapekmez and I. Dincer, “Thermodynamic analysis of a novel solar and geothermal based combined energy system for hydrogen production,” Int J Hydrogen Energy, vol. 45, no. 9, pp. 5608–5628, Feb. 2020, doi: 10.1016/j.ijhydene.2018.12.046.
[35] J. Zaman and A. Chakma, “Production of hydrogen and sulfur from hydrogen sulfide,” 1995.
[36] M. Shah, M. Prajapati, K. Yadav, and A. Sircar, “A review of the geothermal integrated hydrogen production system as a sustainable way of solving potential fuel shortages,” J Clean Prod, p. 135001, Nov. 2022, doi: 10.1016/j.jclepro.2022.135001.
[37] W. Li, S. Garcia, and S. Wang, “Thermoelectric ionogel for low-grade heat harvesting,” in Low-grade thermal energy harvesting: advances in materials, devices, and emerging applications, S. Wang, Ed., Matthew Deans, 2022, pp. 63–82.
[38] Y. E. Yuksel and M. Ozturk, “Thermodynamic and thermoeconomic analyses of a geothermal energy based integrated system for hydrogen production,” Int J Hydrogen Energy, vol. 42, no. 4, pp. 2530–2546, Jan. 2017, doi: 10.1016/j.ijhydene.2016.04.172.
[39] T. Gundersen, “The Concept of Exergy and Energy Quality,” 2011.
[40] G. Tsatsaronis and F. Cziesla, “Thermoeconomics,” in Encyclopedia of Physical Science and Technology, Elsevier, 2003, pp. 659–680. doi: 10.1016/B0-12-227410-5/00944-3.
[41] A. A. AlZahrani and I. Dincer, “Thermodynamic and electrochemical analyses of a solid oxide electrolyzer for hydrogen production,” Int J Hydrogen Energy, vol. 42, no. 33, pp. 21404–21413, Aug. 2017, doi: 10.1016/j.ijhydene.2017.03.186.
[42] S. Rashidi, N. Karimi, B. Sunden, K. C. Kim, A. G. Olabi, and O. Mahian, “Progress and challenges on the thermal management of electrochemical energy conversion and storage technologies: Fuel cells, electrolysers, and supercapacitors,” Prog Energy Combust Sci, vol. 88, p. 100966, Jan. 2022, doi: 10.1016/j.pecs.2021.100966.
[43] X. Chen et al., “Temperature and voltage dynamic control of PEMFC Stack using MPC method,” Energy Reports, vol. 8, pp. 798–808, Nov. 2022, doi: 10.1016/j.egyr.2021.11.271.
[44] T. Chmielniak and L. Remiorz, “Entropy analysis of hydrogen production in electrolytic processes,” Energy, vol. 211, Nov. 2020, doi: 10.1016/j.energy.2020.118468.
[45] M. Kanoglu, I. Dincer, and Y. A. Cengel, “Exergy for better environment and sustainability,” Environ Dev Sustain, vol. 11, no. 5, pp. 971–988, Sep. 2009, doi: 10.1007/s10668-008-9162-3.
[46] I. Dincer and A. Abu-Rayash, “Sustainability modeling,” in Energy Sustainability, Elsevier, 2020, pp. 119–164. doi: 10.1016/B978-0-12-819556-7.00006-1.