Effect of Vacuum on Evaporation of Seawater
Pengaruh Vakum Pada Penguapan Air Laut
Abstract
Water has become a vital necessity for every living organism to survive, leading to a threefold increase in global freshwater usage over the past 50 years. However, only 2.8% of the Earth's surface water is freshwater, while the rest is seawater. Therefore, seawater is processed into clean freshwater through desalination methods to make it consumable for the public. The desalination process involves two stages: evaporation and condensation aided by heat energy from a heater plate and a vacuum system. The use of vacuum in the desalination device aims to accelerate evaporation. In this study, three vacuum pressure variables were tested, namely no vacuum, 1 inHg vacuum pressure, and 2 inHg vacuum pressure. Data will be collected every 5 minutes for a total duration of 30 minutes for each variable. The research findings indicate that desalination using a vacuum system significantly affects the evaporation rate and the amount of freshwater obtained from the condensation process.
References
N. C. V Monintja, R. Lumintang, and J. Kokalinso, “Destilasi Air Bersih Untuk Masyarakat Pesisir Pantai Kelurahan Manembo-Nembo Kecamatan Matuari Bitung,” 2018. [Online]. Available: https://ejournal.unsrat.ac.id/index.php/jtmu/article/view/33063
V. K. Chauhan, S. K. Shukla, J. V. Tirkey, and P. K. Singh Rathore, A Comprehensive Review Of Direct Solar Desalination Techniques And Its Advancements, vol. 284. Elsevier Ltd, 2021. doi: 10.1016/j.jclepro.2020.124719.
B. Irada Amalia and D. Agung Sugiri, “Ketersediaan Air Bersih Dan Perubahan Iklim: Studi Krisis Air Di Kedungkarang Kabupaten Demak,” 2014. [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/pwk
M. A. Abedin, A. E. Collins, U. Habiba, and R. Shaw, “Climate Change, Water Scarcity, and Health Adaptation in Southwestern Coastal Bangladesh,” Int. J. Disaster Risk Sci., vol. 10, no. 1, pp. 28–42, 2019, doi: 10.1007/s13753-018-0211-8.
M. Shammi, M. M. Rahman, S. E. Bondad, and M. Bodrud-Doza, “Impacts of salinity intrusion in community health: A review of experiences on drinking water sodium from coastal areas of bangladesh,” Healthc., vol. 7, no. 1, 2019, doi: 10.3390/healthcare7010050.
D. Mugisidi and O. Heriyani, “Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy,” E3S Web Conf., vol. 31, pp. 18–21, 2018, doi: 10.1051/e3sconf/20183102005.
A. Abotaleb and A. Mabrouk, “The impact of vapor box location on the performance of the multiple effect distillation for seawater desalination technology,” Desalin. Water Treat., vol. 216, pp. 1–13, 2021, doi: 10.5004/dwt.2021.26821.
H. Trisnawati, “Strategi Daya Tarik Wisata Tanjung Batu Menanggulangi Krisis Air Bersih Di Kecamatan Pemangkat,” Manaj. Halal dan Pariwisata Syariah, vol. 4, no. 1, pp. 12–24, 2021, [Online]. Available: http://journal.iaisambas.ac.id/index.php/HalalanThayyiban/article/view/416/493
S. Abhishek, A. S. Kumar, E. Anjana, M. Rahul, and S. Jisma, “Water purification using solar thermal and solar PV,” 2018 Int. Conf. Emerg. Trends Innov. Eng. Technol. Res. ICETIETR 2018, pp. 1–4, 2018, doi: 10.1109/ICETIETR.2018.8529132.
A. Yani, “Study experimental alat destilasi air laut terhadap kuantitas dan kualitas air tawar yang dihasilkan dengan menggunakan energi matahari,” Turbo J. Progr. Stud. Tek. Mesin, vol. 10, no. 2, 2021, doi: 10.24127/trb.v10i2.1744.
M. J. Jasman, “Modifikasi Alat Pengolahan Air Laut Menjadi Air Bersih,” Jkl, vol. 9, no. April, pp. 1–9, 2019, doi: 10.47718/jkl.v9i1.637.
H. Rabby, M. S. Drs. Suwandi, and M. S. Edy Wibowo, S.Si., “Analisa Pengaruh Temperatur, Kelembaban, Intensitas Cahaya, Lama Penyinaran Dan Konsentrasi Larutan Terhadap Penguapan Air Garam Dalam Disitilator Analysis,” eProceedings Eng., vol. 4, no. 1, pp. 572–579, 2017, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/3507
B. Anand, R. Shankar, S. Murugavelh, W. Rivera, K. Midhun Prasad, and R. Nagarajan, “A Review On Solar Photovoltaic Thermal Integrated Desalination Technologies,” Renew. Sustain. Energy Rev., vol. 141, no. January, p. 110787, 2021, doi: 10.1016/j.rser.2021.110787.
D. Sumardiyanto, S. E. Susilowati, F. Hidayat, and ..., “Penyuluhan Destilasi Dan Filtrasi Air Laut Menjadi Air Bersih Untuk Masyarakat Sekitar Jakarta Utara,” …, vol. 4, no. 2, pp. 1–9, 2021, [Online]. Available: http://journal.uta45jakarta.ac.id/index.php/berdikari/article/view/4999
S. : Riskawati et al., “Penguasaan Konsep Suhu dan Kalor dengan Experiential Learning melalui Pembelajaran Destilasi Air Laut,” J. Ris. Pendidik. Fis., vol. 5, no. 1, pp. 56–64, 2020, doi: 10.17977/um058v5i1p58-64.
M. Anggara, D. Widhiyanuriyawan, and M. N. Sasongko, “Pengaruh Ukuran Butir Pasir Besi Dan Volume Air Laut Pada Absorber Type Fins Solar Distillation Terhadap Produktivitas Air Tawar,” J. Rekayasa Mesin, vol. 7, no. 3, pp. 135–143, 2016, doi: 10.21776/ub.jrm.2016.007.03.5.
A. W. Krisdiarto, A. Ferhat, A. W. Krisdiarto, and M. P. Bimantio, “Penyediaan Air Bagi Masyarakat Pesisir Terdampak Kekeringan dengan Teknologi Desalinasi Air Laut Sederhana,” DIKEMAS (Jurnal Pengabdi. Kpd. Masyarakat), vol. 4, no. 2, 2020, doi: 10.32486/jd.v4i2.532.
M. Mulyanef, B. Burmawi, and K. Muslimin, “Pengolahan Air Laut Menjadi Air Bersih Dan Garam Dengan Destilasi Tenaga Surya,” J. Tek. Mesin ISSN …, vol. 4, no. 1, pp. 25–29, 2015, [Online]. Available: https://jtm.itp.ac.id/index.php/jtm/article/view/596/796
C. Elango, N. Gunasekaran, and K. Sampathkumar, “Thermal models of solar still - A comprehensive review,” Renew. Sustain. Energy Rev., vol. 47, pp. 856–911, 2015, doi: 10.1016/j.rser.2015.03.054.
N. I. Riani, S. Syamsuri, and R. R. Pratama, “Simulasi Numerik Aliran Melewati Nozzle Pada Ejector Converging – Diverging Dengan Variasi Diameter Exit Nozzle,” R.E.M. (Rekayasa Energi Manufaktur) J., vol. 2, no. 1, p. 19, 2017, doi: 10.21070/r.e.m.v2i1.796.
S. Iqbal, Sukmawaty, G. M. ian D. Putra, and D. A. S. Tiawati, “Analisis Kinerja Alat Desalinasi Air Laut Penghasil Air Tawar Dan Garam Dengan Menggunakan Tenaga Surya,” vol. 6, no. 1, pp. 29–34, 2019.
M. F. Remeli, B. Singh, N. Amirah, M. S. Meon, and W. N. Fadilla, “Solar Distillation Thermoelectric Power Generation,” IOP Conf. Ser. Earth Environ. Sci., vol. 268, no. 1, pp. 3–8, 2019, doi: 10.1088/1755-1315/268/1/012022.
C. Chen, Y. Kuang, and L. Hu, “Challenges and Opportunities for Solar Evaporation,” Joule, vol. 3, no. 3, pp. 683–718, 2019, doi: 10.1016/j.joule.2018.12.023.
S. W. Sharshir et al., “A mini review of techniques used to improve the tubular solar still performance for solar water desalination,” Process Saf. Environ. Prot., vol. 124, pp. 204–212, 2019, doi: 10.1016/j.psep.2019.02.020.
T. Ding, Y. Zhou, W. L. Ong, and G. W. Ho, “Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization,” Mater. Today, vol. 42, no. xx, pp. 178–191, 2021, doi: 10.1016/j.mattod.2020.10.022.
R. Natawisastra, R. Bramawanto, M. Ma’muri, L. Alfaris, and S. Suhernalis, “Rancang Bangun Alat Destilasi Air Laut yang Dilengkapi Pemanas Air Sederhana,” 2022. doi: 10.15578/jkn.v17i2.11382.
M. I. Mowaviq, “Kendali Alat Destilasi Air Laut Elektrik Berbasis Mikrokontroler,” Kilat, vol. 10, no. 2, pp. 280–286, Oct. 2021, doi: 10.33322/kilat.v10i2.1316.
M. Rusdi, A. Amprin, and K. Kahar, “Variasi Temperatur Dan Waktu Destilasi terhadap Sifat Fisik, Kimia, dan Rendemen Air Laut Menggunakan Pemanas Elektrik,” J. Pertan. Terpadu, vol. 9, no. 2, pp. 201–214, Dec. 2021, doi: 10.36084/jpt..v9i2.332.
K. B. A. Walangare, A. S. M. Lumenta, J. O. Wuwung, and B. A. Sugiarso, “Rancang bangun alat konversi air laut menjadi air minum dengan proses destilasi sederhana menggunakan pemanas elektrik,” J. Tek. Elektro dan Komput., vol. 2, no. 2, pp. 0–11, 2013, doi: 10.35793/jtek.2.2.2013.1786.
C. Wahyudi, “Rancang Bangun Alat Pemisah Air Dan Garam Dari Air Laut Dengan Memanfaatkan Energi Panel Surya,” J. Phys. A Math. Theor., vol. 4, no. 2, pp. 21–23, 2017, [Online]. Available: http://jurnal.ubl.ac.id/index.php/JTM/article/view/1192
R. R. S Wulandari, D. Prayogo, Suhartini, and M. F. Fauzi, “Optimalisasi Perawatan Fresh Water Generator Guna Mempertahankan Produksi Air Tawar di Kapal PGN FSRU Lampung,” Airman J. Tek. dan Keselam. Transp., vol. 2, no. 1, pp. 57–68, 2020, doi: 10.46509/ajtkt.v1i2.19.
X. Tao and C. A. Infante Ferreira, “Heat transfer and frictional pressure drop during condensation in plate heat exchangers: Assessment of correlations and a new method,” Int. J. Heat Mass Transf., vol. 135, pp. 996–1012, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.01.132.
H. Ambarita, “Rancang Bangun Alat Desalinasi Air Laut Sistem Vakum Alami Dengan Tenaga Surya,” J. Flywheel, vol. 9, no. 1, pp. 37–42, 2018, [Online]. Available: https://ejournal.itn.ac.id/index.php/flywheel/article/view/2558
H. Ambarita and E. Y. Setiawan, “Analysis of Condenser Performance Desalination of Solar Energy of the Natural Vacuum System At the Time of Low Radiation Intensity,” J. Sci. Appl. Eng., vol. 1, no. 1, pp. 20–26, 2018, doi: 10.31328/jsae.v1i1.550.
A. T. S. Haji, R. Wirosoedarmo, and M. W. Tyas, “Analisis Nomografi Suhu, Laju Penguapan dan Tekanan Udara untuk Perancangan Alat Desalinasi Tenaga Surya Dengan Pengaturan Vakum Analysis,” 2018. doi: 10.21776/ub.jsal.2017.004.02.1.
S. F. Dina, Jufrizal, Azwardi, and M. Syahputra, “Pengaruh tekanan vakum pada proses desalinasi air laut menggunakan tenaga surya tipe kolektor tabung vakum,” Indones. J. Ind. Res., vol. 12, no. 24, pp. 16–20, 2017, [Online]. Available: https://www.neliti.com/publications/449774/pengaruh-tekanan-vakum-pada-proses-desalinasi-air-laut-menggunakan-tenaga-surya#cite
M. W. Tyas, A. T. Sutan, and H. Ruslan, “Analisis Nomografi Suhu , Laju Penguapan Dan Tekanan Udara Pada Alat Desalinasi Tenaga Surya Dengan Pengaturan Vakum The Nomographic Analysis Against Temperature , Evaporation Rate and Air Pressure For A Solar Powered Desalination Device with Vacuum Contr,” 2017. [Online]. Available: https://jsal.ub.ac.id/index.php/jsal/article/view/271
M. S. Islam, A. Sultana, A. H. M. Saadat, M. S. Islam, M. Shammi, and M. K. Uddin, “Desalination Technologies for Developing Countries: A Review,” J. Sci. Res., vol. 10, no. 1, pp. 77–97, 2018, doi: 10.3329/jsr.v10i1.33179.
A. R. Effendi, “Analisis Perubahan Tekanan Vakum Kondensor Terhadap Kerja Turbin Dan Produksi Listrik PLTU Unit 1 Sebalang Menggunakan Simulasi Cycle Tempo,” J. Powerpl., vol. 8, no. 1, pp. 1–29, 2020, doi: 10.33322/powerplant.v8i1.1047.
M. S. Gozali and O. A. Dianto, “Pirani Gauge Inficon BPG400 Sebagai Alat Ukur dan Analisis Tekanan Pompa Vacuum,” J. Appliedelectrical Eng., vol. 1, no. 1, pp. 7–13, 2017.
A. Sukarno, Bono, and B. Prasetyo, “Analisis Perubahan Tekanan Vakum Kondensor Terhadap Kinerja Kondensor Di PLTU Tanjung Jati B Unit 1,” EKSERGI J. Tek. Energi, vol. 10, no. 2, pp. 65–71, 2014.
B. Majhi, D. Naidu, A. P. Mishra, and S. C. Satapathy, “Improved prediction of daily pan evaporation using Deep-LSTM model,” Neural Comput. Appl., vol. 32, no. 12, pp. 7823–7838, 2020, doi: 10.1007/s00521-019-04127-7.
R. Wirangga, D. Mugisidi, A. T. Sayuti, and O. Heriyani, “The Impact of Wind Speed on the Rate of Water Evaporation in a Desalination Chamber,” vol. 1, no. 1, pp. 39–50, 2023, doi: 10.37934/arfmts.106.1.3950.
H. Bernoulli, M. Pembelajaran, F. Meter, and P. M. Fluida, “Prosiding Seminar Nasional NCIET Vol.1 (2020) B277-B285 1,” Pros. Semin. Nas. NCIET Vol.1 B227-B241, vol. 1, pp. 277–285, 2020.
I. G. Y. Dewantara, B. M. Suyitno, and I. G. E. Lesmana, “Desalinasi Air Laut Berbasis Energi Surya Sebagai Alternatif Penyediaan Air Bersih,” J. Tek. Mesin, vol. 7, no. 1, p. 1, 2018, doi: 10.22441/jtm.v7i1.2124.
K. Astawa, M. Sucipta, I. P. Gede, and A. Negara, “Analisa Performansi Destilasi Air Laut Tenaga Surya Menggunakan Penyerap Radiasi Surya Tipe Bergelombang Berbahan Dasar Beton,” J. Energi Dan Manufaktur, vol. 5, no. 1, pp. 7–13, 2012.
F. I. Pasaribu, A. K. Hasibuan, N. Evalina, and E. S. Nasution, “Analisa Penggunaan Surya Panel Phollycristal 240 WP Sebagai Kinerja Destilator Air Laut,” RELE (Rekayasa Elektr. dan Energi) J. Tek. Elektro, vol. 4, no. 2, pp. 90–99, 2022, doi: 10.30596/rele.v4i2.9530.
Copyright (c) 2023 Ahmad Maulana Yusuf
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.