The Effect of Closed Wheels on Efficiency and Losses Pengaruh Kincir Tertutup Terhadap Efisiensi dan Rugi-rugi

Main Article Content

Zaka Nurfadilah
Dan Mugisidi
Abdul Rahman Soleh Pohan
Oktarina Heriyani

Abstract

Waterwheel is a component in a Micro Hydro Power Plant (PLTMH) which obtains energy from flowing water which has a height and speed. The amount of energy converted by the water wheel depends on the shape of the blade and the installation position, but the losses due to wasted water are still large. Therefore this study proposes a closed water wheel to reduce losses. This research uses two condition fo water wheel: open wheel and closed wheel. This research uses one mill which applied into two conditions. The waterwheel is made using Polylactid Acid (PLA)and tested using 2 inch pipe lines and flow rates of 10, 12, 14, 16, 18, 20 m3/hour. The efficiency of a closed water wheel is higher than that of an open wheel at all discharge rates. The highest efficiency for a closed wheel is 54.54% and for an open wheel is 52.25% at a discharge of 10 m3/hour with a loss ratio of 0.078 for an open wheel and 0.065 for a closed wheel which shows that the losses in the water wheel are reduced.

Article Details

Section
Articles

References

[1] E. Elfiano et al., “Pembuatan Kincir Air Untuk Pembangkit Listrik Dengan Pemanfaatan Arus Air Sungai,” vol. 1, no. 2, 2017.
[2] R. Boli, A. Makhsud, M. Tahir, and M. Tahir, “Analisis Daya Output Dan Efisiensi Kincir Air Sudu Miring Yang Bekerja Pada Saluran Horizontal,” Gorontalo J. Infrastruct. Sci. Eng., vol. 1, no. 2, p. 1, 2018, doi: 10.32662/gojise.v1i2.423.
[3] J. Prasetyo, “Kincir Bertingkat pada Pembangkit Listrik Mikrohidro,” Avitec, vol. 1, no. 1, pp. 71–76, 2019, doi: 10.28989/avitec.v1i1.502.
[4] A. Muliawan and A. Yani, “Analisis Daya Dan Efisiensi Turbin Air Kinetis Akibat Perubahan Putaran Runner,” Sainstek J. Sains dan Teknol., vol. 8, no. 1, p. 1, 2017, doi: 10.31958/js.v8i1.434.
[5] L. Sule, A. A. Mochtar, and O. Sutresman, “Performance of undershot water wheel with bowl-shaped blades model,” Int. J. Technol., vol. 11, no. 2, pp. 278–287, 2020, doi: 10.14716/ijtech.v11i2.2465.
[6] H. A. Santoso, G. E. Kusuma, S. So, and S. T. Sarena, “Perancangan dan Pembuatan Kincir Air Type Overshot Sebagai Pembangkit Listrik Tenaga Mikrohidro,” pp. 145–150, 2017.
[7] S. C. Laksmana, A. Fahruddin, and A. Akbar, “Pengaruh Sudut Pengarah Aliran Pada Turbin Air Crossflow Tingkat Dua Terhadap Putaran dan Daya,” R.E.M. (Rekayasa Energi Manufaktur) J., vol. 3, no. 1, p. 35, 2018, doi: 10.21070/r.e.m.v3i1.1591.
[8] N. E. Falabibla, “Bab II Landasan Teori,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 8–24, 2019.
[9] M. M. Saleh and E. Widodo, “Analisa Kinerja Aliran Fluida dalam Rangkaian Seri dan Paralel dengan Penambahan Tube Bundle pada Pompa Sentrifugal,” R.E.M. (Rekayasa Energi Manufaktur) J., vol. 3, no. 2, p. 71, 2019, doi: 10.21070/r.e.m.v3i2.1884.
[10] R. A. Luhung, D. Mugisidi, A. Fikri, and O. Heriyani, “Pengujian Kinerja Detridge Wheel sebagai Pembangkit Listrik Tenaga Air Head Sangat Rendah,” Pros. Semin. Nas. Teknoka, vol. 3, no. 2502, p. 44, 2019, doi: 10.22236/teknoka.v3i0.2912.
[11] E. Quaranta, “Stream water wheels as renewable energy supply in flowing water: Theoretical considerations, performance assessment and design recommendations,” Energy Sustain. Dev., vol. 45, pp. 96–109, 2018, doi: 10.1016/j.esd.2018.05.002.
[12] D. Mugisidi, I. N. Fauzi, O. Heriyani, Y. Djeli, E. Aidhilhan, and P. H. Gunawan, “Development of the Dethridge Wheel Blade Shape for Hydropower Generation in Irrigation Canals in Indonesia,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 98, no. 2, pp. 146–156, 2022, doi: 10.37934/arfmts.98.2.146156.
[13] W. Feng, Y. Zheng, A. Yu, and Q. Tang, “Experimental and Numerical Analysis of the Clearance Effects between Blades and Hub in a Water Wheel Used for Power Generation,” Water, vol. 14, no. 22, p. 3640, 2022, doi: 10.3390/w14223640.
[14] J. Emitor, J. Teknik, E. Fakultas, and U. M. Surakarta, “PEMANFAATAN PEMANDIAN UMUM UNTUK PEMBANGKIT TENAGA LISTRIK MIKROHIDRO ( PLTMh ) MENGGUNAKAN KINCIR TIPE,” J. Emit., vol. 12, no. 01, 2012.
[15] A. Junaidi, Rinaldi, and A. Hendri, “Model Fisik Kincir Air Sebagai Pembangkit Listrik,” Jom FTEKNIK, vol. 1, no. 2, pp. 1–9, 2014, [Online]. Available: https://media.neliti.com/media/publications/206233-model-fisik-kincir-air-sebagai-pembangki.pdf.
[16] M. H. Nguyen, H. Jeong, and C. Yang, “A study on flow fields and performance of water wheel turbine using experimental and numerical analyses,” Sci. China Technol. Sci., vol. 61, no. 3, pp. 464–474, 2018, doi: 10.1007/s11431-017-9146-9.
[17] A. Tevata and C. Inprasit, “The effect of paddle number and immersed radius ratio on water wheel performance,” Energy Procedia, vol. 9, pp. 359–365, 2011, doi: 10.1016/j.egypro.2011.09.039.
[18] O. Heriyani, D. Mugisidi, M. Y. Djeli, and Y. Iqbal, “EFFECT OF CANAL BASE GEOMETRY ON DETHRIDGE,” vol. 1, no. 4, pp. 41–48, 2020.
[19] A. Buku and I. L. K. Wong, “A laboratory scale curve bladed undershot water wheel characteristic as an irrigation power,” Int. J. Mech. Eng. Technol., vol. 9, no. 9, pp. 1048–1054, 2018.
[20] S. Wahyudi and D. N. Cahyadi, “Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar,” J. Rekayasa Mesin, vol. 3, no. 2, pp. 337–342, 2012.
[21] I. G. Widodo, A. Sunarso, A. Agato, H. Sihombing, and D. Sulistiono, “Pengaruh Kedalaman Pencelupan Sudu Kincir Terhadap Unjuk Kerja Kincir Air,” J. Rekayasa Mesin, vol. 13, no. 2, p. 62, 2018, doi: 10.32497/rm.v13i2.1246.
[22] M. Z. Kadir and Bambang, “Pengaruh Tinggi Sudu Kincir Air Terhadap Daya Dan Efisiensi Yang Dihasilkan,” Semin. Nas. Tah. Tek. Mesin, pp. 13–15, 2010.
[23] O. Heriyani, D. Mugisidi, R. A. Luhung, M. Y. Djeli, and A. Fikri, “Performance of dethridge wheel as low head power generator and loss analysis,” J. Phys. Conf. Ser., vol. 1373, no. 1, 2019, doi: 10.1088/1742-6596/1373/1/012012.
[24] D. Mugisidi, O. Heriyani, R. A. Luhung, and M. R. D. Andrian, “Utilization of the dethridge wheel as a low head power generator and loss analysis,” MATEC Web Conf., vol. 204, pp. 1–6, 2018, doi: 10.1051/matecconf/201820404003.
[25] E. Quaranta and R. Revelli, “Performance characteristics, power losses and mechanical power estimation for a breastshot water wheel,” Energy, vol. 87, pp. 315–325, 2015, doi: 10.1016/j.energy.2015.04.079.
[26] E. Quaranta and R. Revelli, “Output power and power losses estimation for an overshot water wheel,” Renew. Energy, vol. 83, pp. 979–987, 2015, doi: 10.1016/j.renene.2015.05.018.
[27] L. Tang, S. Yuan, Y. Tang, and Z. Gao, “Performance characteristics in runner of an impulse water turbine with splitter blade,” Processes, vol. 9, no. 2, pp. 1–14, 2021, doi: 10.3390/pr9020303.
[28] A. Židonis, D. S. Benzon, and G. A. Aggidis, “Development of hydro impulse turbines and new opportunities,” Renew. Sustain. Energy Rev., vol. 51, pp. 1624–1635, 2015, doi: 10.1016/j.rser.2015.07.007.
[29] D. S. Benzon, G. A. Aggidis, and J. S. Anagnostopoulos, “Development of the Turgo Impulse turbine: Past and present,” Appl. Energy, vol. 166, pp. 1–18, 2016, doi: 10.1016/j.apenergy.2015.12.091.
[30] H. P. Prabawa, D. Mugisidi, and O. Heriyani, “Pengaruh Variasi Ukuran Diameter Nozzle terhadap Daya dan Efisiensi Kincir Air Sudu Datar,” Pros. Semnastek, no. November, 2016.
[31] M. Denny, “The efficiency of overshot and undershot waterwheels,” Eur. J. Phys., vol. 25, no. 2, pp. 193–202, 2004, doi: 10.1088/0143-0807/25/2/006.
[32] Y. Nishi, T. Inagaki, Y. Li, R. Omiya, and J. Fukutomi, “Study on an undershot cross-flow water turbine,” J. Therm. Sci., vol. 23, no. 3, pp. 239–245, 2014, doi: 10.1007/s11630-014-0701-y.
[33] L. Jasa, A. Priyadi, and M. H. Purnomo, “An alternative model of overshot waterwheel based on a tracking nozzle angle technique for hydropower converter,” Int. J. Renew. Energy Res., vol. 4, no. 4, pp. 1013–1019, 2014.
[34] A. Buku, H. Calvin, P. Tiyow, and B. Tangaran, “Undershot Flat Plate Water Wheel Performance as a Water Lifter,” Int. J. Mech. Eng. Technol., vol. 10, no. 10, pp. 158–165, 2019, [Online]. Available: http://www.iaeme.com/IJMET/index.asp158http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=10&IType=10http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=10&IType=10.
[35] I. W. B. Saputra, A. I. Weking, and L. Jasa, “Rancang Bangun Pemodelan Pembangkit Listrik Tenaga Mikro Hidro (Pltmh) Menggunakan Kincir Overshot Wheel,” Maj. Ilm. Teknol. Elektro, vol. 16, no. 2, p. 48, 2017, doi: 10.24843/mite.2017.v16i02p09.
[36] A. Syuriadi and A. Nidhar, “Pengujian variasi jumlah dan sudut bilah kincir air tipe breastshot,” Politeknologi, vol. 14, no. 3, 2015.
[37] L. Tang, S. Yuan, Y. Tang, and Z. Qiu, “Optimization of impulse water turbine based on GA-BP neural network arithmetic,” J. Mech. Sci. Technol., vol. 33, no. 1, pp. 241–253, 2019, doi: 10.1007/s12206-018-1224-3.