Design of Gasifier with Microwave-Based Technology with Steam and CO2 As Gas Agent To Produce Syngas


  • (1)  Imron Rosyadi            Universitas Sultan Ageng Tirtayasa  
            Indonesia

  • (2) * Shofiatul Ula              
            Indonesia

  • (3)  Rivaldi              
            Indonesia

  • (4)  Kurniawan Putra Yudha              
            Indonesia

    (*) Corresponding Author

Abstract

This research is motivated by the increasing gas emissions produced by industrial, automotive and household activities which mostly use fossil energy as an energy source. CO2 capture is introduced to the use of gasification technology in an effort to reduce CO2 emissions which are one of the causes of the greenhouse effect. The role of microwave is also introduced as an effort to increase thermal efficiency and increase production and quality of syngas and its role in reducing tar which is known to be high in biomass gasification. The utilization of water vapor is also clearly disclosed and its effect on syngas products, especially hydrogen gas. The role of the parameters that affect the gasification process is analyzed to see which variant has the best role in improving the quality and quantity of syngas. Research development opportunities are presented by looking at research gaps and future prospects

References

P. A. Falci, “Repesando Práticas em Educação Ambiental: Proposta de uma Sequência Didática [Rethinking Practices in Environmental Education: Proposal for a Didactic Sequence],” p. 48, 2019, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125536741&partnerID=40&md5=1cce024128c6e33480f6ac696f35b8e5

U. S. EPA, “Climate Change Indicators: Greenhouse Gases.” https://www.epa.gov/climate-indicators/climate-change-indicators-global-greenhouse-gas-emissions (accessed Jul. 25, 2022).

C. Watch, “No Title,” Climate Watch Platform, 2019. https://www.climatewatchdata.org/ghg-emissions?end_year=2019&start_year=1990 (accessed Jul. 25, 2022).

F. Joos and R. Spahni, “Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years,” Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 5, pp. 1425–1430, 2008, doi: 10.1073/pnas.0707386105.

P. Friedlingstein et al., “Global Carbon Budget 2021,” pp. 1917–2005, 2022.

BPS, “Neraca Arus Energi Dan Neraca Emisi Gas Rumah Kaca Indonesia 2015-2019,” pp. 0–70, 2021.

J. van Heek, K. Arning, and M. Ziefle, “Reduce, reuse, recycle: Acceptance of CO2-utilization for plastic products,” Energy Policy, vol. 105, no. October 2016, pp. 53–66, 2017, doi: 10.1016/j.enpol.2017.02.016.

J. Wilcox, Carbon capture. 2012. doi: 10.1007/978-1-4614-2215-0.

M. Mohammad, R. J. Isaifan, Y. W. Weldu, M. A. Rahman, and S. G. Al-Ghamdi, “Progress on carbon dioxide capture, storage and utilisation,” Int. J. Glob. Warm., vol. 20, no. 2, pp. 124–144, 2020, doi: 10.1504/IJGW.2020.105386.

R. K. Srivastava, N. P. Shetti, K. R. Reddy, E. E. Kwon, M. N. Nadagouda, and T. M. Aminabhavi, “Biomass utilization and production of biofuels from carbon neutral materials,” Environ. Pollut., vol. 276, p. 116731, 2021, doi: 10.1016/j.envpol.2021.116731.

B. Patel, M. Guo, C. Chong, S. H. M. Sarudin, and K. Hellgardt, “Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase,” Sci. Total Environ., vol. 568, pp. 489–497, 2016, doi: 10.1016/j.scitotenv.2016.06.041.

J. A. Ruiz, M. C. Juárez, M. P. Morales, P. Muñoz, and M. A. Mendívil, “Biomass gasification for electricity generation: Review of current technology barriers,” Renew. Sustain. Energy Rev., vol. 18, pp. 174–183, 2013, doi: 10.1016/j.rser.2012.10.021.

Y. Zhang, Y. Zhao, X. Gao, B. Li, and J. Huang, “Energy and exergy analyses of syngas produced from rice husk gasification in an entrained flow reactor,” J. Clean. Prod., vol. 95, pp. 273–280, 2015, doi: 10.1016/j.jclepro.2015.02.053.

C. Li and K. Suzuki, “Tar property, analysis, reforming mechanism and model for biomass gasification-An overview,” Renew. Sustain. Energy Rev., vol. 13, no. 3, pp. 594–604, 2009, doi: 10.1016/j.rser.2008.01.009.

X. Huang, Z. Hu, Z. Miao, E. Jiang, and X. Ma, “Chemical looping gasification of rice husk to produce hydrogen-rich syngas under different oxygen carrier preparation methods,” Int. J. Hydrogen Energy, vol. 45, no. 51, pp. 26865–26876, Oct. 2020, doi: 10.1016/j.ijhydene.2020.07.116.

Z. A. B. Z. Alauddin, P. Lahijani, M. Mohammadi, and A. R. Mohamed, “Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review,” Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 2852–2862, 2010, doi: 10.1016/j.rser.2010.07.026.

D. Feng, Y. Zhao, Y. Zhang, Z. Zhang, L. Zhang, and S. Sun, “In-situ steam reforming of biomass tar over sawdust biochar in mild catalytic temperature,” Biomass and Bioenergy, vol. 107, no. November, pp. 261–270, 2017, doi: 10.1016/j.biombioe.2017.10.007.

X. Kan, X. Chen, Y. Shen, A. A. Lapkin, M. Kraft, and C. H. Wang, “Box-Behnken design based CO2 co-gasification of horticultural waste and sewage sludge with addition of ash from waste as catalyst,” Appl. Energy, vol. 242, no. February, pp. 1549–1561, 2019, doi: 10.1016/j.apenergy.2019.03.176.

S. Valizadeh et al., “Production of H2- and CO-rich syngas from the CO2 gasification of cow manure over (Sr/Mg)-promoted-Ni/Al2O3 catalysts,” Int. J. Hydrogen Energy, no. xxxx, pp. 1–9, 2022, doi: 10.1016/j.ijhydene.2021.12.176.

H. Zhang et al., “Agricultural waste-derived biochars from co-hydrothermal gasification of rice husk and chicken manure and their adsorption performance for dimethoate,” J. Hazard. Mater., vol. 429, no. October 2021, p. 128248, 2022, doi: 10.1016/j.jhazmat.2022.128248.

M. Liu, F. Li, H. Liu, and C. H. Wang, “Synergistic effect on co-gasification of chicken manure and petroleum coke: An investigation of sustainable waste management,” Chemical Engineering Journal, vol. 417. 2021. doi: 10.1016/j.cej.2020.128008.

Y. Zhang et al., “Syngas production from microwave-assisted air gasification of biomass: Part 2 model validation,” Renew. Energy, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0960148119303295

Q. Liu et al., “Characteristics and kinetics of coal char steam gasification under microwave heating,” Fuel, vol. 256, no. July, 2019, doi: 10.1016/j.fuel.2019.115899.

M. Gao, Z. Yang, Y. Wang, Y. Bai, F. Li, and K. Xie, “Impact of calcium on the synergistic effect for the reactivity of coal char gasification in H2O/CO2 mixtures,” Fuel, vol. 189, pp. 312–321, 2017, doi: 10.1016/j.fuel.2016.10.100.

D. Luan, Y. Wang, J. Tang, and D. Jain, “Frequency Distribution in Domestic Microwave Ovens and Its Influence on Heating Pattern,” J. Food Sci., vol. 82, no. 2, pp. 429–436, 2017, doi: 10.1111/1750-3841.13587.

C. Kumar and M. A. Karim, “Microwave-convective drying of food materials: A critical review,” Crit. Rev. Food Sci. Nutr., vol. 59, no. 3, pp. 379–394, 2019, doi: 10.1080/10408398.2017.1373269.

S. N. Nayak, C. P. Bhasin, and M. G. Nayak, “A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems,” Renew. Energy, vol. 143, pp. 1366–1387, 2019, doi: 10.1016/j.renene.2019.05.056.

D. S. Gunarathne, P. Mellin, W. Yang, M. Pettersson, and R. Ljunggren, “Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace,” Appl. Energy, vol. 170, no. 2016, pp. 353–361, 2016, doi: 10.1016/j.apenergy.2016.03.003.

U. Arena, “Process and technological aspects of municipal solid waste gasification. A review,” Waste Manag., vol. 32, no. 4, pp. 625–639, 2012, doi: 10.1016/j.wasman.2011.09.025.

J. Ren, J.-P. Cao, X.-Y. Zhao, F.-L. Yang, and X.-Y. Wei, “Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models,” Renew. Sustain. Energy Rev., vol. 116, p. 109426, 2019, doi: https://doi.org/10.1016/j.rser.2019.109426.

S. W. Han et al., “Gasification characteristics of waste plastics (SRF) in a bubbling fluidized bed: Effects of temperature and equivalence ratio,” Energy, vol. 238, p. 121944, 2022, doi: 10.1016/j.energy.2021.121944.

Y. K. Choi, J. H. Ko, and J. S. Kim, “A new type three-stage gasification of dried sewage sludge: Effects of equivalence ratio, weight ratio of activated carbon to feed, and feed rate on gas composition and tar, NH3, and H2S removal and results of approximately 5 h gasification,” Energy, vol. 118, pp. 139–146, 2017, doi: 10.1016/j.energy.2016.12.032.

H. Wahyudi, I. Rosyadi, and M. P. Pinem, “Eulerian multi-fluid simulation of biomass gasification in circulating fluidized beds: effects of equivalence ratio,” IOP Conf. Ser. Mater. Sci. Eng., vol. 508, p. 12067, 2019, doi: 10.1088/1757-899x/508/1/012067.

A. Kumar, K. Eskridge, D. D. Jones, and M. A. Hanna, “Steam-air fluidized bed gasification of distillers grains: Effects of steam to biomass ratio, equivalence ratio and gasification temperature,” Bioresour. Technol., vol. 100, no. 6, pp. 2062–2068, 2009, doi: 10.1016/j.biortech.2008.10.011.

S. J. Yoon and J. G. Lee, “Hydrogen-rich syngas production through coal and charcoal gasification using microwave steam and air plasma torch,” Int. J. Hydrogen Energy, 2012, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360319912018563

L. Liu, Q. Wang, S. Ahmad, X. Yang, M. Ji, and Y. Sun, “Steam reforming of toluene as model biomass tar to H2-rich syngas in a DBD plasma-catalytic system,” J. Energy Inst., vol. 91, no. 6, pp. 927–939, 2018, doi: https://doi.org/10.1016/j.joei.2017.09.003.

J. Rizkiana et al., “Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures,” Fuel, vol. 134, pp. 414–419, 2014, doi: 10.1016/j.fuel.2014.06.008.

H. Leng et al., “Science of the Total Environment Effect of high-temperature and microwave expanding modi fi cation on reactivity of coal char for char-NO interaction,” Sci. Total Environ., vol. 760, p. 144028, 2021, doi: 10.1016/j.scitotenv.2020.144028.

T. Papalas, I. Polychronidis, A. N. Antzaras, and A. A. Lemonidou, “Enhancing the intermediate-temperature CO2 capture efficiency of mineral MgO via molten alkali nitrates and CaCO3: Characterization and sorption mechanism,” J. CO2 Util., vol. 50, no. March, p. 101605, 2021, doi: 10.1016/j.jcou.2021.101605.

Y. Zhao et al., “Recent progress on solid oxide fuel cell: Lowering temperature and utilizing non-hydrogen fuels,” Int. J. Hydrogen Energy, vol. 38, no. 36, pp. 16498–16517, 2013, doi: https://doi.org/10.1016/j.ijhydene.2013.07.077.

H. J. Jeong, I. S. Hwang, and J. Hwang, “Co-gasification of bituminous coal-pine sawdust blended char with H2O at temperatures of 750-850 °C,” Fuel, vol. 156, pp. 26–29, 2015, doi: 10.1016/j.fuel.2015.04.018.

J. Hrdlicka, C. Feik, D. Carpenter, and M. Pomeroy, “Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis,” Contract, no. December, 2008.

C. Remarks, “Ah; = (34,” vol. 762, pp. 758–762, 1980.

M. Christov and R. Dohrn, High-pressure fluid phase equilibria: Experimental methods and systems investigated (1994-1999), vol. 202, no. 1. 2002. doi: 10.1016/S0378-3812(02)00096-1.

P. Krammer and H. Vogel, “Hydrolysis of esters in subcritical and supercritical water,” J. Supercrit. Fluids, vol. 16, no. 3, pp. 189–206, 2000, doi: 10.1016/S0896-8446(99)00032-7.

J. W. King, R. L. Holliday, and G. R. List, “Hydrolysis of soybean oil: In a subcritical water flow reactor,” Green Chem., vol. 1, no. 6, pp. 261–264, 1999, doi: 10.1039/a908861j.

S. S. Toor, L. Rosendahl, and A. Rudolf, “Hydrothermal liquefaction of biomass: A review of subcritical water technologies,” Energy, vol. 36, no. 5, pp. 2328–2342, 2011, doi: 10.1016/j.energy.2011.03.013.

L. E. Taba et al., “The effect of temperature on various parameters in coal, biomass and CO-gasification: a review,” Renew. Sustain. Energy Rev., vol. 16, no. 8, pp. 5584–5596, 2012, doi: https://doi.org/10.1016/j.rser.2012.06.015.

J. Wang et al., “Hydrogen-rich gas production by steam gasification of municipal solid waste (MSW) using NiO supported on modified dolomite,” Int. J. Hydrogen Energy, vol. 37, no. 8, pp. 6503–6510, 2012, doi: 10.1016/j.ijhydene.2012.01.070.

D. H. Shin et al., “A pure steam microwave plasma torch: Gasification of powdered coal in the plasma,” Surf. Coatings Technol., vol. 228, no. SUPPL.1, pp. S520–S523, 2013, doi: 10.1016/j.surfcoat.2012.04.071.

C. Wu, V. L. Budarin, M. Wang, V. Sharifi, M. J. Gronnow, and ..., “CO2 gasification of bio-char derived from conventional and microwave pyrolysis,” Appl. Energy, 2015, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261915005383

P. Lahijani, Z. A. Zainal, A. R. Mohamed, and ..., “Microwave-enhanced CO2 gasification of oil palm shell char,” Bioresour. …, 2014, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0960852414001862

A. A. Salema and F. N. Ani, “Microwave induced pyrolysis of oil palm biomass,” Bioresour. Technol., vol. 102, no. 3, pp. 3388–3395, 2011, doi: 10.1016/j.biortech.2010.09.115.

Q. Xie et al., “Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal,” Bioresour. Technol., vol. 156, pp. 291–296, 2014, doi: 10.1016/j.biortech.2014.01.057.

I. Rosyadi, S. Suyitno, A. X. Ilyas, A. Faishal, A. Budiono, and M. Yusuf, “Producing hydrogen-rich syngas via microwave heating and co-gasification: a systematic review,” Biofuel Res. J., vol. 9, no. 1, pp. 1573–1591, 2022, doi: 10.18331/BRJ2022.9.1.4.

R. Omar, A. Idris, R. Yunus, K. Khalid, and M. I. Aida Isma, “Characterization of empty fruit bunch for microwave-assisted pyrolysis,” Fuel, vol. 90, no. 4, pp. 1536–1544, Apr. 2011, doi: 10.1016/j.fuel.2011.01.023.

J. A. Menéndez et al., “Microwave heating processes involving carbon materials,” Fuel Process. Technol., vol. 91, no. 1, pp. 1–8, 2010, doi: 10.1016/j.fuproc.2009.08.021.

H. Will, P. Scholz, and B. Ondruschka, “Microwave-assisted heterogeneous gas-phase catalysis,” Chem. Eng. Technol., vol. 27, no. 2, pp. 113–122, 2004, doi: 10.1002/ceat.200401865.

T. Bunma and P. Kuchonthara, “Synergistic study between CaO and MgO sorbents for hydrogen rich gas production from the pyrolysis-gasification of sugarcane leaves,” Process Saf. Environ. Prot., vol. 118, pp. 188–194, 2018, doi: 10.1016/j.psep.2018.06.034.

Y. Liu, T. Wang, X. Zhang, X. Hu, T. Liu, and Q. Guo, “Chemical looping staged conversion of microalgae with calcium ferrite as oxygen carrier: Pyrolysis and gasification characteristics,” J. Anal. Appl. Pyrolysis, vol. 156, no. January, p. 105129, 2021, doi: 10.1016/j.jaap.2021.105129.

N. A. Ahmad, K. A. Al-attab, Z. A. Zainal, and P. Lahijani, “Microwave assisted steam - CO2 char gasification of oil palm shell,” Bioresour. Technol. Reports, vol. 15, no. May, p. 100785, 2021, doi: 10.1016/j.biteb.2021.100785.

K. Koido, K. Kurosawa, K. Endo, and M. Sato, “Catalytic and inhibitory roles of K and Ca in the pyrolysis and CO2 or steam gasification of Erianthus, and their effects on co-gasification performance,” Biomass and Bioenergy, vol. 154, no. September, p. 106257, 2021, doi: 10.1016/j.biombioe.2021.106257.

J. Zhang et al., “Syngas production by integrating CO2 partial gasification of pine sawdust and methane pyrolysis over the gasification residue,” Int. J. Hydrogen Energy, vol. 44, no. 36, pp. 19742–19754, 2019, doi: 10.1016/j.ijhydene.2019.06.014.

M. S. Mastuli, N. Kamarulzaman, M. F. Kasim, S. Sivasangar, M. I. Saiman, and Y. H. Taufiq-Yap, “Catalytic gasification of oil palm frond biomass in supercritical water using MgO supported Ni, Cu and Zn oxides as catalysts for hydrogen production,” Int. J. Hydrogen Energy, vol. 42, no. 16, pp. 11215–11228, 2017, doi: 10.1016/j.ijhydene.2017.02.174.

M. Shah and P. Mondal, “Optimization of CO2 reforming of methane process for the syngas production over Ni–Ce/TiO2–ZrO2 catalyst using the Taguchi method,” Int. J. Hydrogen Energy, vol. 46, no. 44, pp. 22799–22812, 2021, doi: 10.1016/j.ijhydene.2021.04.091.

J. Hu, L. Liu, M. Cui, and J. Wang, “Calcium-promoted catalytic activity of potassium carbonate for gasification of coal char: The synergistic effect unrelated to mineral matter in coal,” Fuel, vol. 111, pp. 628–635, 2013, doi: 10.1016/j.fuel.2013.03.038.

B. R. Müller, “K2CO3- and K2CO3/porous SiO2-doped steam activated extruded carbons based on multi-component biochar composite: Preparation, characterization and kinetic gasification behavior,” Chem. Eng. J. Adv., p. 100244, 2022, doi: 10.1016/j.ceja.2022.100244.

J. Cai et al., “Synergistic effects of co-gasification of municipal solid waste and biomass in fixed-bed gasifier,” Process Saf. Environ. Prot., vol. 148, pp. 1–12, Apr. 2021, doi: 10.1016/j.psep.2020.09.063.

M. Asadullah, S. I. Ito, K. Kunimori, M. Yamada, and K. Tomishige, “Energy efficient production of hydrogen and syngas from biomass: Development of low-temperature catalytic process for cellulose gasification,” Environ. Sci. Technol., vol. 36, no. 20, pp. 4476–4481, 2002, doi: 10.1021/es020575r.

J. Wei, Q. Guo, L. Ding, K. Yoshikawa, and G. Yu, “Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification,” Appl. Energy, vol. 206, no. October, pp. 1354–1363, 2017, doi: 10.1016/j.apenergy.2017.10.005.

M. J. Sheikhdavoodi, M. Almassi, M. Ebrahimi-Nik, A. Kruse, and H. Bahrami, “Gasification of sugarcane bagasse in supercritical water; Evaluation of alkali catalysts for maximum hydrogen production,” J. Energy Inst., vol. 88, no. 4, pp. 450–458, 2015, doi: 10.1016/j.joei.2014.10.005.

P. Yang et al., “Synergistic effect of the cotton stalk and high-ash coal on gas production during co-pyrolysis/gasification,” Bioresour. Technol., vol. 336, no. April, p. 125336, 2021, doi: 10.1016/j.biortech.2021.125336.

P. Freund, “ Making deep reductions in CO 2 emissions from coal-fired power plant using capture and storage of CO 2 ,” Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 217, no. 1, pp. 1–7, 2003, doi: 10.1243/095765003321148628.

D. Chery, V. Lair, and M. Cassir, “Overview on CO 2 valorization: Challenge of molten carbonates,” Front. Energy Res., vol. 3, no. OCT, pp. 1–10, 2015, doi: 10.3389/fenrg.2015.00043.

E. de Visser et al., “Dynamis CO2 quality recommendations,” Int. J. Greenh. Gas Control, vol. 2, no. 4, pp. 478–484, 2008, doi: 10.1016/j.ijggc.2008.04.006.

A. A. Olajire, “CO2 capture and separation technologies for end-of-pipe applications - A review,” Energy, vol. 35, no. 6, pp. 2610–2628, 2010, doi: 10.1016/j.energy.2010.02.030.

J. Gibbins and H. Chalmers, “Carbon capture and storage,” Energy Policy, vol. 36, no. 12, pp. 4317–4322, 2008, doi: 10.1016/j.enpol.2008.09.058.

J. Gomes, J. Nascimento, and H. Rodrigues, “Estimating local greenhouse gas emissions-A case study on a Portuguese municipality,” Int. J. Greenh. Gas Control, vol. 2, no. 1, pp. 130–135, 2008, doi: 10.1016/S1750-5836(07)00098-9.

M. Hu et al., “Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture,” Energy, vol. 90, pp. 857–863, 2015, doi: 10.1016/j.energy.2015.07.122.

Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2022-11-20
 
Section
Articles