Analysis Numerical Of Torsion Strength Of Low Carbon Steel Using Software (Solidworks)


Analisis Numerik Kekuatan Puntir Baja Karbon Rendah Menggunakan Software (Solidworks)


  • (1) * Affandi            Universitas Muhammadiyah Sumatera Utara  
            Indonesia

  • (2)  Syifaul Huzni            Universitas Syah Kuala Banda Aceh  
            Indonesia

    (*) Corresponding Author

Abstract

One of the components, namely the shaft that is subjected to torsion will experience torsional deformation. The greater the torsional deformation indicates the ability of the engine components is low, and vice versa. The problem that often occurs during torsional testing is that processing the data into a shear stress-strain curve requires a lot of effort. If the specimen used is a solid rod, there will be a fairly steep stress gradient along the cross-section of the specimen making measurements difficult. The objective of this research is to identify and analyze the torsional strength test on low carbon steel by a numerical method using SolidWorks software. The torsion test specimen is low carbon steel with ASTM E-143 standard. This research method begins with a literature study, testing the composition of the test specimen, making and modeling torsion test specimens. After that, torsional testing was carried out which was then carried out with static simulation tests. Then perform a torsional strength analysis using the finite element method using software (SolidWorks). Based on the results of geometry making and modeling of torsion test specimens with ASTM E-143 standard, that the stress distribution that occurs on the surface of the specimen angle area has a value that is not too significant, ranging from 2.879e+09 and 2.973e+09. However, it is necessary to simulate the torsion test of the SolidWorks software with varying mesh sizes and torsion test specimens with different ASTM standards.

References

[1] Jatmiko, S., & Jokosisworo, S. (n.d.). Analisa kekuatan puntir dan kekuatan lentur putar poros baja ST 60 sebagai aplikasi perancangan bahan poros baling-baling kapal.
[2] Jatmiko, S., Jokosisworo, S., Belakang, L., & Masalah, B. (n.d.). Analisa kekuatan puntir dan kekuatan lentur putar poros baja st 60 sebagai aplikasi perancangan bahan poros baling-baling kapal.
[3] Putra, T. D. (2014). Variasi bahan material dan ukuran diameter poros dengan menggunakan metode pengujian puntir. Widya Teknika Vol.22 No.2; Oktober 2014 ISSN 1411 – 0660: 116 – 121, 22(2), 116–121.
[4] Henra Heny Sigarlaki , Stenly Tangkuman, T. A. (2015). Aplikasi metode elemen hingga pada perancangan poros belakang gokar listrik Henra. Teknik Mesin, 4, 104–115.
[5] Industri, F. T. (2016). Analisis frekuensi optimum pengujian horizontal fatigue pada berbegai rangka sepeda tipe trekking dengan Surabaya 2016.
[6] Rahmanto, H. (2013). Simulasi v-bending dengan variasi kecepatan pembebanan terhadap keausan dies menggunakan software finite element. Jurnal Ilmiah Teknik Mesin, Universitas Islam 45 Bekasi, Vol. 1(No. 1).
[7] Tyagita, D. A., Irawan, Y. S., & Suprapto, W. (2014). Kekuatan Puntir dan Porositas Hasil Sambungan Las Gesek almg-Si dengan Variasi Chamfer dan Gaya Tekan Akhir. Rekayasa Mesin, 5(1), 69–74.
[8] Metode, M., & Hingga, E. (2011). 50 analisa tegangan-regangan produk tongkat lansia dengan menggunakan metode elemen hingga Santoso Mulyadi 1. 4, 50–58.
[9] Akin, J. E. (2009). Finite Element Analysis Concepts via Solidworkss.
[10] Sucipta, A., & Saggaff, A. (2013). Dengan Menggunakan Profil Baja Ringan. 1(1).
[11] Umurani, K., & Amri, T. (2018). Desain dan simulasi suspensi sepeda motor dengan solidworks 2012. Jurnal Rekayasa Material, Manufaktur Dan Energi, 1(1), 131–139. https://doi.org/doi.org/10.30596/rmme.v1i1.2435
Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2021-12-29
 
Section
Articles