Simulasi Numerik Aliran Melewati Nozzle Pada Ejector Converging – Diverging Dengan Variasi Diameter Exit Nozzle Numerical Simulation of Flow Through the Nozzle In Ejector Converging – Diverging With Variation of Exit Nozzle Diameter

Main Article Content

Novi Indah Riani
Syamsuri Syamsuri
Rungky Rianata Pratama

Abstract

In the process of cooling or refrigeration, are required components where capable to flow the fluid to create a cycle of the cooling process. Among some of the vapor compression systems, the usage of ejector is the simplest system. Ejector has three main parts: primary nozzle, mixing chamber and diffuser. Various experiments of steam ejectors developed to increase the value of the COP. Entrainment ratio directly affects to the COP value generated by the system, where the geometric shapes and operating conditions in the steam ejector will affect to the value entrainment ratio. This research was carried out numerical simulations using CFD commercial software with k-epsilon to predict flow phenomena which passes through the ejector nozzle in the ejector converging-diverging which varying exit diameters 3.5 mm; 4mm; 5 mm; and 5.5 mm. Respectively the simulation results showed exit nozzle steam ejector that the smallest diameter of 3.5 mm give the optimum performance because it provide the highest speed of fluidity. While the state of vacuum in mixing chamber increase, it cause the secondary mass flow higher as well as the value of the entrainment ratio.

Article Details

Section
Articles

References

[1] Zhu, Yinhai, Jiang, Peixue. Experimental and Numerical Investigation of the Effect of Shock Wave Characteristic on the Ejector Performance. International Journal of Refrigerant. 40, 31- 42, 2013.

[2] Sriveerakul, T., Aphornranata, S., Chunnanond, K. Performance Prediction of Steam Ejector Using Computational Fluid Dynamics: Part 1. Validation of the CFD Results. International Journal of Thermal Sciences. 46, 812 – 822, 2006.

[3] Apornranata, S., Eames, I., W. A Small Capacity Steam-ejector Refrigerator: Experimental Investigation of a System Using Ejector with Movable Primary Nozzle. International Journal Refrigeration. 20 (5), 352-358, 1997.

[4] Surjosatyo, A., Vidian, F., Sulistyo Nugroho, F. Kajian Komputasi Pengaruh Posisi Keluaran Nozel Terhadap Kinerja Ejektor Udara Pada Sistim Aliran Bersirkulasi Eksternal. Seminar Nasional Tahunan Teknik Mesin (SNTTM). ISBN: 978-602-97742-0-7, 2010.

[5] Pianthong, K., Seehanam, W., Behnia, M., Sriveerakul, T. Investigation and Improvment of Ejector Refrigeration System Using Computational Fluid Dynamics Tecnique. International Journal of Energy Conversion Management. Vol 48 Issue 9. pp 2556 – 2564, 2007.

[6] Huang BJ, Chang JM, Wang CP, Petrenko VA. A 1D Analysis of Ejector Performance. Int J Refrigeration. Vol. 22, 354–364, 1999.

[7] Fahris, Mohammad. Analisa Variasi Panjang Throat Section Terhadap Entraintment Ratio Pada Steam Ejektor Refrigerasi Dengan Menggunakan CFD. Jurnal Teknik UNISFAT Vol.5 No.2 Maret 2010 Hal 15-23, 2010.

[8] FLUENT, Inc. Manual Fluent Documentation. FLUENT, Inc, 1998.

[9] White, Frank M. Fluid Mechanics. WBC McGraw-Hill. Boston, 1988.

[10] Utomo, Tony, S., Nugroho, Sri, Yohana, E. Analisa Pengaruh Posisi Keluaran Nosel Primer Terhadap Performa Steam Ejector Menggunakan CFD. Jurnal Teknik Mesin ROTASI Undip Vol. 13 No. 2 April 2011. 22 – 23, 2011.

[11] Munson, Bruce R., Young, Donald F., Okiishi, Theodore H. Mekanika Fluida Jilid I. Edisi Keempat. Jakarta: Erlangga, 2004.